Characterization of an arachidonic acid-selective acyl-CoA synthetase from murine T lymphocytes. 1985

A S Taylor, and H Sprecher, and J H Russell

Evidence is presented that the murine thymoma EL4 and cytotoxic T lymphocyte clones possess two distinct long-chain fatty acyl-CoA synthetase activities. One enzyme shows activity toward a broad spectrum of fatty acid substrates, similar to the long-chain fatty acyl-CoA synthetase from rat liver. The other enzyme is selective for arachidonic acid and related fatty acids. Fatty acid competition studies using EL4 microsomes demonstrate that [14C]palmitoyl-CoA synthesis (Km = 13 +/- 1 microM, Vmax = 7 +/- 1 nmol/mg per min) is inhibited by unlabeled palmitate, oleate, linoleate or linolenate (Ki = 15-25 microM) and weakly by arachidonate (Ki greater than 100 microM). Similar inhibition is observed for the activation of [14C]oleate (Km = 31 +/- 3 microM, Vmax = 6 +/- 2 nmol/mg per min). On the other hand, [14C]arachidonyl-CoA synthetase (Km = 15 +/- 3 microM, Vmax = 13 +/- 2 nmol/mg per min) is inhibited by unlabeled arachidonic acid (Ki = 20 microM) but not by unlabeled palmitate, oleate, linoleate and linolenate. The description of arachidonoyl-CoA synthetase in cytotoxic T lymphocyte clones represents the first example of a cell with little or no capacity to synthesize arachidonic acid metabolites, yet which possesses a selective esterification mechanism for the fatty acid. Studies on the specificity of the arachidonic acid-selective acyl-CoA synthetase utilized arachidonic acid metabolites and structurally related fatty acids and yielded two points of interest: (1) metabolism of arachidonic acid to monohydroxy fatty acids (HETEs) resulted in compounds with significantly decreased ability to be activated by the arachidonate-selective acyl-CoA synthetase; (2) arachidonate was a much better substrate than was 5,8,11-eicosatrienoic acid (Km = 41 microM), the fatty acid which accumulates during essential fatty acid deficiency. The possible role of an arachidonic acid-selective acyl-CoA synthetase in lymphocyte activation and as a homeostatic mechanism during essential fatty acid deficiency is discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D003065 Coenzyme A CoA,CoASH
D003066 Coenzyme A Ligases Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1. Acyl CoA Synthetase,Acyl CoA Synthetases,Acyl Coenzyme A Synthetase,Acyl Coenzyme A Synthetases,Coenzyme A Ligase,Coenzyme A Synthetase,Coenzyme A Synthetases,Acid-Thiol Ligases,Co A Ligases,A Ligase, Coenzyme,A Synthetase, Coenzyme,Acid Thiol Ligases,CoA Synthetase, Acyl,CoA Synthetases, Acyl,Ligase, Coenzyme A,Ligases, Acid-Thiol,Ligases, Co A,Ligases, Coenzyme A,Synthetase, Acyl CoA,Synthetase, Coenzyme A,Synthetases, Acyl CoA,Synthetases, Coenzyme A
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005228 Fatty Acids, Essential Long chain organic acid molecules that must be obtained from the diet. Examples are LINOLEIC ACIDS and LINOLENIC ACIDS. Acids, Essential Fatty,Essential Fatty Acids
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

A S Taylor, and H Sprecher, and J H Russell
October 2019, Prostaglandins & other lipid mediators,
A S Taylor, and H Sprecher, and J H Russell
December 2000, Biochemical Society transactions,
A S Taylor, and H Sprecher, and J H Russell
October 2003, The Journal of biological chemistry,
A S Taylor, and H Sprecher, and J H Russell
February 2001, Nihon rinsho. Japanese journal of clinical medicine,
A S Taylor, and H Sprecher, and J H Russell
August 2014, Journal of lipid research,
A S Taylor, and H Sprecher, and J H Russell
April 2021, Plant physiology,
A S Taylor, and H Sprecher, and J H Russell
March 2003, Lipids,
A S Taylor, and H Sprecher, and J H Russell
October 1975, Archives of biochemistry and biophysics,
A S Taylor, and H Sprecher, and J H Russell
July 1996, The Journal of biological chemistry,
Copied contents to your clipboard!