Effect of insulin on ketogenesis and fatty acid synthesis in rat hepatocytes incubated with dichloroacetate. 1985

L Agius, and W J Vaartjes

In parenchymal liver cells isolated from fed rats, insulin increased the formation of 14CO2 from [1-14C]pyruvate (and presumably the flux through pyruvate dehydrogenase) by 14%. Dichloroacetate, an activator of the pyruvate dehydrogenase complex, stimulated this process by 133%. As judged from the conversion of [2-14C]pyruvate to 14CO2, the tricarboxylic acid cycle activity was not affected by insulin, but it was depressed by dichloroacetate. In hepatocytes from fed rats, incubated with glucose as the only carbon source, dichloroacetate caused a stimulation (31%) of fatty acid synthesis, measured as 3H incorporation from 3H2O into fatty acid, and an increased (134%) accumulation of ketone bodies (acetoacetate + D-3-hydroxybutyrate). Dichloroacetate did not affect ketone body formation from [14C]palmitate, suggesting that the increased accumulation of ketone bodies resulted from acetyl-CoA derived from pyruvate. Insulin stimulated fatty acid synthesis in hepatocytes from fed rats. In the combined presence of insulin plus dichloroacetate, fatty acid synthesis was more rapid than in the presence of either insulin or dichloroacetate, whereas the accumulation of ketone bodies was smaller than in the presence of dichloroacetate alone. Although pyruvate dehydrogenase activity, which is rate-limiting for fatty acid synthesis in hepatocytes from fed rats, is stimulated both by insulin and by dichloroacetate, the reciprocal changes in fatty acid synthesis and ketone body accumulation brought about by insulin in the presence of dichloroacetate suggest that insulin is also involved in the regulation of fatty acid synthesis at a mitochondrial site after pyruvate dehydrogenase, possibly at the partitioning of acetyl-CoA between citrate and ketone body formation.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007657 Ketone Bodies The metabolic substances ACETONE; 3-HYDROXYBUTYRIC ACID; and acetoacetic acid (ACETOACETATES). They are produced in the liver and kidney during FATTY ACIDS oxidation and used as a source of energy by the heart, muscle and brain. Acetone Bodies,Bodies, Acetone,Bodies, Ketone
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002951 Citrates Derivatives of CITRIC ACID.
D003999 Dichloroacetic Acid A derivative of ACETIC ACID that contains two CHLORINE atoms attached to its methyl group. Sodium Dichloroacetate,Bichloroacetic Acid,Potassium Dichloroacetate,Acid, Bichloroacetic,Acid, Dichloroacetic,Dichloroacetate, Potassium,Dichloroacetate, Sodium
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

L Agius, and W J Vaartjes
February 1982, Biochemical and biophysical research communications,
L Agius, and W J Vaartjes
August 1991, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
L Agius, and W J Vaartjes
January 1979, Advances in experimental medicine and biology,
L Agius, and W J Vaartjes
February 1977, Metabolism: clinical and experimental,
L Agius, and W J Vaartjes
March 1998, Biochemistry and molecular biology international,
Copied contents to your clipboard!