Developmental changes in the modification of lysosomal enzymes in Dictyostelium discoideum. 1985

D A Knecht, and E D Green, and W F Loomis, and R L Dimond

Evidence has been found for a generalized change in the post-translational modification of lysosomal enzymes during development of Dictyostelium discoideum. The physical and antigenic properties of four developmentally regulated lysosomal enzymes, N-acetylglucosaminidase, beta-glucosidase, alpha-mannosidase, and acid phosphatase, have been examined throughout the life cycle. In vegetative cells, a single major isoelectric species is detected for each enzymatic activity on native nonequilibrium isoelectric focusing gels. Between 6 and 10 hr of development, all activities, including the preformed enzyme, become less negatively charged, resulting in a modest but reproducible shift in the isoelectric focusing pattern. This alteration is not detected by native gel electrophoresis at constant pH. As development continues, the specific activity of beta-glucosidase, alpha-mannosidase, and acid phosphatase continues to increase and coincidentally, new, less acidic isozymic bands of activity can be observed on both gel systems. Some of these new isozymes accumulate preferentially in anterior cells, while others accumulate preferentially in posterior cells of migrating slugs. N-Acetylglucosaminidase does not increase in specific activity late in development and no new isozymic species appear. Using a monoclonal antibody that reacts with sulfated N-linked oligosaccharides shared by vegetative lysosomal enzymes in D. discoideum, the antigenicity of the developmental isozymes has been characterized. All of the enzymatic activity present during vegetative growth and early development is immunoprecipitable. However, the less negatively charged isozymes that accumulate after aggregation are not recognized by the antibody. Nonantigenic acid phosphatase and alpha-mannosidase are found in both anterior and posterior cells from migrating pseudoplasmodia. Since each enzyme is coded by a single structural gene, these results suggest that the isozymes present late in development arise from the synthesis of the same polypeptides with altered post-translational modifications. The appearance of anterior and posterior specific isozymes is likely to be the result of cell type specific changes in the glycoprotein modification pathway for newly synthesized proteins.

UI MeSH Term Description Entries
D007526 Isoelectric Point The pH in solutions of proteins and related compounds at which the dipolar ions are at a maximum. Isoelectric Points,Point, Isoelectric,Points, Isoelectric
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008361 Mannosidases Glycoside hydrolases that catalyze the hydrolysis of alpha or beta linked MANNOSE. Mannosidase
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D000118 Acetylglucosaminidase A beta-N-Acetylhexosaminidase that catalyzes the hydrolysis of terminal, non-reducing 2-acetamido-2-deoxy-beta-glucose residues in chitobiose and higher analogs as well as in glycoproteins. Has been used widely in structural studies on bacterial cell walls and in the study of diseases such as MUCOLIPIDOSIS and various inflammatory disorders of muscle and connective tissue. N-Acetyl-beta-D-glucosaminidase,Chitobiase,N,N-Diacetylchitobiase,N-Ac-beta-Glucosaminidase,NAGase,beta-D-Acetamido-2-Deoxyglucosidase,beta-D-N-acetylglucosaminidase,beta-N-Acetylglucosaminidase,N Ac beta Glucosaminidase,N Acetyl beta D glucosaminidase,N,N Diacetylchitobiase,beta D Acetamido 2 Deoxyglucosidase,beta D N acetylglucosaminidase,beta N Acetylglucosaminidase
D000135 Acid Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.2. Acid beta-Glycerophosphatase,Acid beta Glycerophosphatase
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D001617 beta-Glucosidase An exocellulase with specificity for a variety of beta-D-glycoside substrates. It catalyzes the hydrolysis of terminal non-reducing residues in beta-D-glucosides with release of GLUCOSE. Cellobiases,Amygdalase,Cellobiase,Emulsion beta-D-Glucosidase,Gentiobiase,Emulsion beta D Glucosidase,beta Glucosidase,beta-D-Glucosidase, Emulsion

Related Publications

D A Knecht, and E D Green, and W F Loomis, and R L Dimond
January 1986, Molecular and cellular biochemistry,
D A Knecht, and E D Green, and W F Loomis, and R L Dimond
July 1981, The Journal of biological chemistry,
D A Knecht, and E D Green, and W F Loomis, and R L Dimond
January 1985, Differentiation; research in biological diversity,
D A Knecht, and E D Green, and W F Loomis, and R L Dimond
January 1987, Methods in cell biology,
D A Knecht, and E D Green, and W F Loomis, and R L Dimond
February 1980, Biochemical Society transactions,
D A Knecht, and E D Green, and W F Loomis, and R L Dimond
August 2005, Developmental biology,
D A Knecht, and E D Green, and W F Loomis, and R L Dimond
September 1994, Microbiological reviews,
D A Knecht, and E D Green, and W F Loomis, and R L Dimond
November 2007, Eukaryotic cell,
D A Knecht, and E D Green, and W F Loomis, and R L Dimond
March 1977, Biochemical and biophysical research communications,
D A Knecht, and E D Green, and W F Loomis, and R L Dimond
April 1981, The Journal of biological chemistry,
Copied contents to your clipboard!