Distribution of apolipoprotein A-IV in human plasma. 1985

C L Bisgaier, and O P Sachdev, and L Megna, and R M Glickman

Human apoA-IV was purified from delipidated urinary chylomicrons. Monospecific antibodies were raised in rabbits and used to develop a double antibody radioimmunoassay (RIA). Displacement of 125I-labeled apoA-IV by plasma or purified chylomicron apoA-IV resulted in parallel displacement curves, indicating that apoA-IV from both sources share common antigenic determinants. The apoA-IV level in plasma from normal healthy fasting male subjects (n = 5) was 37.4 +/- 4.0 mg/dl, while fat-feeding increased the level to 49.1 +/- 7.9 mg/dl (P less than 0.05) at 4 hr. The apoA-IV level in plasma from abetalipoproteinemic fasting subjects was 13.7 +/- 3.1 mg/dl (n = 5). Plasma from a single fasting Tangier subject showed a reduced apoA-IV level of 21.1 mg/dl. The distribution of apoA-IV in fasting and postprandial plasma was determined by 6% agarose gel chromatography. Fifteen to 25% of plasma apoA-IV eluted in the region of plasma high density lipoprotein (HDL), with the remainder eluting in subsequent column fractions. In abetalipoproteinemic plasma this HDL fraction is reduced and lacks apoA-IV, suggesting that at least some of the apoA-IV on these particles is normally derived from triglyceride-rich lipoproteins. Lipemic plasma from a fat-fed subject showed a small rise (3%) in chylomicron-associated apoA-IV. Gel-filtered HDL and subsequent apoA-IV-containing fractions were subjected to 4-30% polyacrylamide gradient gel electrophoresis (4/30 GGE), and apoA-IV was identified by immunolocalization following transfer of proteins to nitrocellulose paper. In normal plasma apoA-IV was localized throughout all HDL fractions. In addition, normal plasma contained apoA-IV localized in a small particle (diameter 7.8-8.0 nm). This particle also contained apoA-I and lipid. A markedly elevated saturated to unsaturated cholesteryl ester ratio was present in gel-filtered plasma fractions containing small HDL, suggesting an intracellular origin of these particles. In abetalipoproteinemic plasma apoA-IV was absent from all HDL fractions except for the small HDL particles, suggesting that they are not derived from the surface of triglyceride-rich particles. All plasmas contained free apoA-IV. In contrast to gel-filtered plasma, lipoprotein subfractions of fasted normal plasma prepared in the ultracentrifuge primarily contained apoA-IV in the d greater than 1.26 g/ml fraction, suggesting an artifactual redistribution of the apolipoprotein during centrifugation. Overall, these data suggest that apoA-IV secretion into plasma is increased with fat feeding, and that apoA-IV normally exists as both a free apolipoprotein and in association with HDL particles.

UI MeSH Term Description Entries
D007525 Isoelectric Focusing Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point. Electrofocusing,Focusing, Isoelectric
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004041 Dietary Fats Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados. Fats, Dietary,Dietary Fat,Fat, Dietary
D005779 Immunodiffusion Technique involving the diffusion of antigen or antibody through a semisolid medium, usually agar or agarose gel, with the result being a precipitin reaction. Gel Diffusion Tests,Diffusion Test, Gel,Diffusion Tests, Gel,Gel Diffusion Test,Immunodiffusions,Test, Gel Diffusion,Tests, Gel Diffusion
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001054 Apolipoproteins A Structural proteins of the alpha-lipoproteins (HIGH DENSITY LIPOPROTEINS), including APOLIPOPROTEIN A-I and APOLIPOPROTEIN A-II. They can modulate the activity of LECITHIN CHOLESTEROL ACYLTRANSFERASE. These apolipoproteins are low in atherosclerotic patients. They are either absent or present in extremely low plasma concentration in TANGIER DISEASE. Apo-A,ApoA

Related Publications

C L Bisgaier, and O P Sachdev, and L Megna, and R M Glickman
April 1980, The Journal of clinical investigation,
C L Bisgaier, and O P Sachdev, and L Megna, and R M Glickman
September 1994, Clinical chemistry,
C L Bisgaier, and O P Sachdev, and L Megna, and R M Glickman
May 1990, Biochimica et biophysica acta,
C L Bisgaier, and O P Sachdev, and L Megna, and R M Glickman
June 1990, The Journal of biological chemistry,
C L Bisgaier, and O P Sachdev, and L Megna, and R M Glickman
September 1985, The Journal of clinical investigation,
C L Bisgaier, and O P Sachdev, and L Megna, and R M Glickman
February 1979, European journal of biochemistry,
C L Bisgaier, and O P Sachdev, and L Megna, and R M Glickman
January 1994, Annales de biologie clinique,
C L Bisgaier, and O P Sachdev, and L Megna, and R M Glickman
December 1984, The Journal of biological chemistry,
C L Bisgaier, and O P Sachdev, and L Megna, and R M Glickman
October 1981, Clinica chimica acta; international journal of clinical chemistry,
C L Bisgaier, and O P Sachdev, and L Megna, and R M Glickman
August 1986, Journal of lipid research,
Copied contents to your clipboard!