The stimulatory effects of prostaglandins on the melanophores of the lizard, Anolis carolinensis. 1985

A Lucas, and A J Thody, and S Shuster

The melanosome dispersing activity of prostaglandins PGE1, PGE2, PGF1 alpha, PGF2 alpha, PGI2 and 6 beta PGI, was tested on the melanophores of Anolis carolinensis. Only PGE2 and PGE1 were active and while PGE2 was the most potent and acted synergistically with alpha-MSH, PGE1 was additive with alpha-MSH. Arachidonic acid also stimulated melanosome dispersion but its effect was blocked by indomethacin suggesting an action through its conversion to PGE1 or PGE2. The effect of alpha-MSH, on the other hand, was unaltered by indomethacin which suggests that alpha-MSH stimulated melanosome dispersion does not depend upon prostaglandin synthesis. Thus, while some prostaglandins may interact with alpha-MSH to stimulate melanosome dispersion they are unlikely to mediate its action.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D008116 Lizards Reptiles within the order Squamata that generally possess limbs, moveable EYELIDS, and EXTERNAL EAR openings, although there are some species which lack one or more of these structures. Chameleons,Geckos,Chameleon,Gecko,Lizard
D008547 Melanophores Chromatophores (large pigment cells of fish, amphibia, reptiles and many invertebrates) which contain melanin. Short term color changes are brought about by an active redistribution of the melanophores pigment containing organelles (MELANOSOMES). Mammals do not have melanophores; however they have retained smaller pigment cells known as MELANOCYTES. Melanophore
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D011458 Prostaglandins E (11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities. PGE
D011460 Prostaglandins F (9 alpha,11 alpha,13E,15S)-9,11,15-Trihydroxyprost-13-en-1-oic acid (PGF(1 alpha)); (5Z,9 alpha,11,alpha,13E,15S)-9,11,15-trihydroxyprosta-5,13-dien-1-oic acid (PGF(2 alpha)); (5Z,9 alpha,11 alpha,13E,15S,17Z)-9,11,15-trihydroxyprosta-5,13,17-trien-1-oic acid (PGF(3 alpha)). A family of prostaglandins that includes three of the six naturally occurring prostaglandins. All naturally occurring PGF have an alpha configuration at the 9-carbon position. They stimulate uterine and bronchial smooth muscle and are often used as oxytocics. PGF
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

A Lucas, and A J Thody, and S Shuster
August 1981, Endocrinology,
A Lucas, and A J Thody, and S Shuster
November 1969, British journal of pharmacology,
A Lucas, and A J Thody, and S Shuster
January 1952, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
A Lucas, and A J Thody, and S Shuster
February 1953, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
A Lucas, and A J Thody, and S Shuster
April 1969, Biology of reproduction,
A Lucas, and A J Thody, and S Shuster
August 2016, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology,
A Lucas, and A J Thody, and S Shuster
February 1968, General and comparative endocrinology,
A Lucas, and A J Thody, and S Shuster
June 1988, General and comparative endocrinology,
A Lucas, and A J Thody, and S Shuster
November 2008, Journal of experimental zoology. Part A, Ecological genetics and physiology,
A Lucas, and A J Thody, and S Shuster
July 1984, The Journal of experimental zoology,
Copied contents to your clipboard!