Glucuronidation of carcinogenic arylamine metabolites by rat liver microsomes. 1985

C Y Wang, and K Zukowski, and M S Lee

Since 2-acetylaminofluorene (2-AAF), 4-acetylaminobiphenyl (4-AABP) and 2-aminonaphthalene (2-AN) display varying degrees of carcinogenicity in the rat, which is capable of N-acetylating arylamines, an attempt was made to correlate the difference in carcinogenicity of these compounds with the ease of O-glucuronidation of their hydroxamic acids by rat hepatic microsomes, a reaction believed to be a detoxification mechanism. UDP-glucuronosyltransferase activity of rat hepatic microsomes was activated by Triton X-100. Glucuronidation by Triton X-100 activated microsomes of the N-hydroxy derivative of 2-AN was approximately 1.5 and 1.8 times faster than the corresponding derivatives of 2-aminofluorene (2-AF) and 4-aminobiphenyl (4-ABP) respectively. However, glucuronidation of the N-hydroxy-N-acetyl derivative of 2-AN was 40 and 17 times faster than the corresponding derivatives of 2-AF and 4-ABP respectively. Aroclor 1254 and 3-methylcholanthrene, but not phenobarbital, acetanilide and butylated hydroxytoluene, induced the enzyme for the glucuronidation of 2-AN derivatives. The present study (1) demonstrates an inverse relationship between the carcinogenicity of 2-AN, 4-AABP and 2-AAF and the ease of glucuronidation of their hydroxamic acid derivatives, and (2) suggests that, in addition to N- and C-hydroxylation, glucuronidation may play an important role in determining the carcinogenicity of arylamines and arylacetamides in the rat.

UI MeSH Term Description Entries
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002084 Butylated Hydroxytoluene A di-tert-butyl PHENOL with antioxidant properties. Butylhydroxytoluene,2,6-Bis(1,1-dimethylethyl)-4-methylphenol,2,6-Di-t-butyl-4-methylphenol,2,6-Di-tert-butyl-4-methylphenol,2,6-Di-tert-butyl-p-cresol,4-Methyl-2,6-ditertbutylphenol,BHT,Di-tert-butyl-methylphenol,Dibunol,Ionol,Ionol (BHT),2,6 Di t butyl 4 methylphenol,2,6 Di tert butyl 4 methylphenol,2,6 Di tert butyl p cresol,4 Methyl 2,6 ditertbutylphenol,Di tert butyl methylphenol,Hydroxytoluene, Butylated
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D005260 Female Females
D005965 Glucuronates Derivatives of GLUCURONIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the 6-carboxy glucose structure. Glucosiduronates,Glucuronic Acids,Acids, Glucuronic
D000611 Aminobiphenyl Compounds Biphenyl compounds substituted in any position by one or more amino groups. Permitted are any substituents except fused rings. Biphenylamines,Compounds, Aminobiphenyl
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014453 Glucuronosyltransferase A family of enzymes accepting a wide range of substrates, including phenols, alcohols, amines, and fatty acids. They function as drug-metabolizing enzymes that catalyze the conjugation of UDPglucuronic acid to a variety of endogenous and exogenous compounds. EC 2.4.1.17. Glucuronyltransferase,UDP Glucuronosyltransferase,17 beta-Hydroxysteroid UDP-Glucuronosyltransferase,4-Nitrophenol-UDP-Glucuronosyltransferase,7-Hydroxycoumarin UDP Glucuronyltransferase,Androsterone UDP-Glucuronosyltransferase,Bilirubin UDP-Glucuronyltransferase,Estrogen UDP-Glucuronosyltransferase,Estrone Glucuronyltransferase,Glucuronic Transferase,Morphine Glucuronyltransferase,UDP Glucuronyl Transferase,UDP-Glucuronic Acid 3-O-beta-D-Galactosyl-D-Galactose Glucuronosyltransferase,p-Nitrophenyl UDP-Glucuronosyltransferase,17 beta Hydroxysteroid UDP Glucuronosyltransferase,4 Nitrophenol UDP Glucuronosyltransferase,7 Hydroxycoumarin UDP Glucuronyltransferase,Androsterone UDP Glucuronosyltransferase,Bilirubin UDP Glucuronyltransferase,Estrogen UDP Glucuronosyltransferase,Glucuronosyltransferase, UDP,Glucuronyl Transferase, UDP,Glucuronyltransferase, 7-Hydroxycoumarin UDP,Glucuronyltransferase, Estrone,Glucuronyltransferase, Morphine,Transferase, Glucuronic,Transferase, UDP Glucuronyl,UDP Glucuronic Acid 3 O beta D Galactosyl D Galactose Glucuronosyltransferase,UDP Glucuronyltransferase, 7-Hydroxycoumarin,UDP-Glucuronosyltransferase, 17 beta-Hydroxysteroid,UDP-Glucuronosyltransferase, Androsterone,UDP-Glucuronosyltransferase, Estrogen,UDP-Glucuronosyltransferase, p-Nitrophenyl,UDP-Glucuronyltransferase, Bilirubin,p Nitrophenyl UDP Glucuronosyltransferase

Related Publications

C Y Wang, and K Zukowski, and M S Lee
March 1977, Chemical & pharmaceutical bulletin,
C Y Wang, and K Zukowski, and M S Lee
November 1986, Archives of biochemistry and biophysics,
C Y Wang, and K Zukowski, and M S Lee
December 1983, Biochemical pharmacology,
C Y Wang, and K Zukowski, and M S Lee
December 2013, Toxins,
C Y Wang, and K Zukowski, and M S Lee
March 1975, Biochemical pharmacology,
C Y Wang, and K Zukowski, and M S Lee
January 1991, Drug metabolism and disposition: the biological fate of chemicals,
C Y Wang, and K Zukowski, and M S Lee
December 1995, Drug metabolism and disposition: the biological fate of chemicals,
C Y Wang, and K Zukowski, and M S Lee
January 1988, Drug metabolism and disposition: the biological fate of chemicals,
C Y Wang, and K Zukowski, and M S Lee
January 2008, The Journal of pharmacology and experimental therapeutics,
C Y Wang, and K Zukowski, and M S Lee
January 1990, Drug metabolism and disposition: the biological fate of chemicals,
Copied contents to your clipboard!