The G-protein of retinal rod outer segments (transducin). Mechanism of interaction with rhodopsin and nucleotides. 1985

N Bennett, and Y Dupont

The mechanism of interaction of the G-protein of retinal rods with rhodopsin and with nucleotides has been investigated using two independent techniques, light-scattering and direct binding measurements with labeled nucleotides. Binding of photoexcited rhodopsin (R*) and nucleotides are shown to be antagonist, and three conformations of the G-protein are described, each of which is proposed to be related to a different level of light-scattering, as follows: (a) the "dark" state, stable in the absence of photoexcited rhodopsin, in which the nucleotide site is poorly accessible and has a high affinity (dissociation constants, 0.1 microM for GDP and 0.01 microM for GppNHp); (b) the R*-bound state in which the nucleotide site is rapidly accessible with a lower affinity (dissociation constants, about 20 microM for GDP and GTP; 20-100 microM for GppNHp). Binding of R* to the G-protein therefore enables rapid binding or exchange of the nucleotide; this in turn reduces the affinity of the G-protein for R* (dissociation constants, 0.2 microM for G-protein with GDP bound and 2-10 microM for G-protein with GppNHp bound, compared to 1 nM in absence of bound nucleotide); and (c) the third state, the activator of the phosphodiesterase. In the presence of GTP, an additional irreversible and fast step, which is proposed to be the dissociation of alpha-GTP from beta gamma, is shown to occur; a steady state equilibrium is obtained, and the dissociation constant measured between GTP and this third state of the G-protein in the presence of R* is an apparent constant which depends on the rate of transconformation between the first two states and on the rate of GTP hydrolysis. The minimum value of this apparent dissociation constant for GTP (0.05-0.1 (microM) is obtained at high levels of illumination. Finally, some results (number of nucleotide sites and saturation of the rate of the light-scattering signal) suggest an oligomeric association of the G-protein.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D006150 Guanine Nucleotides Guanine Nucleotide,Guanosine Phosphates,Nucleotide, Guanine,Nucleotides, Guanine,Phosphates, Guanosine
D006153 Guanosine Diphosphate A guanine nucleotide containing two phosphate groups esterified to the sugar moiety. GDP,Guanosine 5'-Diphosphate,Guanosine 5'-Trihydrogen Diphosphate,5'-Diphosphate, Guanosine,5'-Trihydrogen Diphosphate, Guanosine,Diphosphate, Guanosine,Diphosphate, Guanosine 5'-Trihydrogen,Guanosine 5' Diphosphate,Guanosine 5' Trihydrogen Diphosphate
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine

Related Publications

N Bennett, and Y Dupont
August 1999, Biochemical and biophysical research communications,
N Bennett, and Y Dupont
August 1988, Science (New York, N.Y.),
N Bennett, and Y Dupont
January 1993, BioEssays : news and reviews in molecular, cellular and developmental biology,
N Bennett, and Y Dupont
January 1983, Methods in enzymology,
N Bennett, and Y Dupont
March 1993, The Journal of biological chemistry,
N Bennett, and Y Dupont
August 1988, Science (New York, N.Y.),
N Bennett, and Y Dupont
January 1995, Biological research,
N Bennett, and Y Dupont
September 1996, Investigative ophthalmology & visual science,
Copied contents to your clipboard!