The gene encoding the T-cell receptor alpha-chain maps close to the Np-2 locus on mouse chromosome 14. 1985

Z Dembić, and W Bannwarth, and B A Taylor, and M Steinmetz

Serological and molecular genetic analyses of T-cell clones have shown that the T-cell antigen receptor apparently comprises two glycosylated, disulphide-linked polypeptide chains (alpha and beta), both of which span the cell membrane. Cloning of the genes encoding the two chains from mouse and human DNA has shown that the alpha- and beta-chains are composed of variable (V) and conserved (C) regions in agreement with peptide mapping data. Gene segments encoding variable and conserved domains of the beta-chain have been identified and undergo rearrangements during T-cell differentiation. The genes encoding the alpha-chain, so far described at the level of complementary DNA clones, also identify DNA rearrangements. Thus, the genes encoding the T-cell receptor show the same structure and dynamic behaviour as immunoglobulin genes, indicating that the two gene families belong to the same supergene family; this evolutionary relationship is supported by the fact that the genes encoding the beta-chain of the T-cell receptor are closely linked to immunoglobulin kappa light-chain genes on chromosome 6 in mouse. In man, however, the beta genes map to chromosome 7 (ref. 14) whereas the kappa-chain genes are located on chromosome 2, indicating that linkage between the two gene families is not needed for proper expression. Here we describe genomic clones encoding the constant portion of the T-cell receptor alpha-chain and map the gene to chromosome 14 in mouse, close to the gene for purine nucleoside phosphorylase (Np-2) which, in man, has been associated with T-cell immunodeficiencies.

UI MeSH Term Description Entries
D007136 Immunoglobulins Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses. Globulins, Immune,Immune Globulin,Immune Globulins,Immunoglobulin,Globulin, Immune
D007145 Immunoglobulin kappa-Chains One of the types of light chains of the immunoglobulins with a molecular weight of approximately 22 kDa. Ig kappa Chains,Immunoglobulins, kappa-Chain,kappa-Immunoglobulin Light Chains,Immunoglobulin kappa-Chain,kappa-Chain Immunoglobulins,kappa-Immunoglobulin Light Chain,kappa-Immunoglobulin Subgroup VK-12,kappa-Immunoglobulin Subgroup VK-21,Chains, Ig kappa,Immunoglobulin kappa Chain,Immunoglobulin kappa Chains,Immunoglobulins, kappa Chain,Light Chain, kappa-Immunoglobulin,Light Chains, kappa-Immunoglobulin,kappa Chain Immunoglobulins,kappa Chains, Ig,kappa Immunoglobulin Light Chain,kappa Immunoglobulin Light Chains,kappa Immunoglobulin Subgroup VK 12,kappa Immunoglobulin Subgroup VK 21,kappa-Chain, Immunoglobulin,kappa-Chains, Immunoglobulin
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

Z Dembić, and W Bannwarth, and B A Taylor, and M Steinmetz
January 1985, Nature,
Z Dembić, and W Bannwarth, and B A Taylor, and M Steinmetz
April 1985, Science (New York, N.Y.),
Z Dembić, and W Bannwarth, and B A Taylor, and M Steinmetz
March 1998, Mammalian genome : official journal of the International Mammalian Genome Society,
Z Dembić, and W Bannwarth, and B A Taylor, and M Steinmetz
January 1998, Mammalian genome : official journal of the International Mammalian Genome Society,
Z Dembić, and W Bannwarth, and B A Taylor, and M Steinmetz
January 1998, Mammalian genome : official journal of the International Mammalian Genome Society,
Z Dembić, and W Bannwarth, and B A Taylor, and M Steinmetz
April 1996, Mammalian genome : official journal of the International Mammalian Genome Society,
Z Dembić, and W Bannwarth, and B A Taylor, and M Steinmetz
March 1985, Science (New York, N.Y.),
Z Dembić, and W Bannwarth, and B A Taylor, and M Steinmetz
April 1993, Proceedings of the National Academy of Sciences of the United States of America,
Z Dembić, and W Bannwarth, and B A Taylor, and M Steinmetz
October 1984, The EMBO journal,
Z Dembić, and W Bannwarth, and B A Taylor, and M Steinmetz
April 1995, Genomics,
Copied contents to your clipboard!