Hypothalamic gonadotrophin-releasing hormone and pituitary and plasma FSH and prolactin during photostimulation and photorefractoriness in intact and thyroidectomized starlings (Sturnus vulgaris). 1985

A Dawson, and B K Follett, and A R Goldsmith, and T J Nicholls

Changes in concentrations of hypothalamic gonadotrophin-releasing hormone (GnRH) and pituitary and plasma FSH and prolactin were measured in intact and thyroidectomized female starlings (Sturnus vulgaris) after transfer from short to long photoperiods. In intact birds, hypothalamic GnRH did not increase significantly during the first 6 weeks of photo-stimulation, but by 12 weeks, as birds became photorefractory, it had decreased to levels significantly lower than those before photostimulation. In thyroidectomized birds, which did not become photorefractory, hypothalamic GnRH remained high after 12 weeks of photostimulation. Pituitary FSH increased in both intact and thyroidectomized birds; it then decreased to low levels in intact photorefractory birds, but remained high in thyroidectomized birds. Plasma FSH increased to a peak after 2 weeks, but by 6 weeks it had decreased to low levels in both groups. In intact birds there was a 70-fold increase in pituitary prolactin during the first 6 weeks, and levels were still high after 12 weeks of photostimulation. In thyroidectomized birds, pituitary prolactin remained low. The results suggest that while the initial effect of long daylengths is to cause gonadal maturation, the ultimate effect is to switch off the reproductive system.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D010906 Pituitary Hormone-Releasing Hormones Peptides, natural or synthetic, that stimulate the release of PITUITARY HORMONES. They were first isolated from the extracts of the HYPOTHALAMUS; MEDIAN EMINENCE; PITUITARY STALK; and NEUROHYPOPHYSIS. In addition, some hypophysiotropic hormones control pituitary cell differentiation, cell proliferation, and hormone synthesis. Some can act on more than one pituitary hormone. Hormones, Pituitary Hormone Releasing,Hypophysiotropic Hormones,Hypothalamic Hypophysiotropic Hormone,Hypothalamic Releasing Factor,Hypothalamic Releasing Hormone,Hypothalamic Releasing Hormones,Hormone, Hypothalamic Hypophysiotropic,Hormones, Hypophysiotropic,Hypophysiotropic Hormone, Hypothalamic,Pituitary Hormone Releasing Hormones,Releasing Hormone, Hypothalamic
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D005260 Female Females
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D006065 Gonadotropins, Pituitary Hormones secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR) that stimulate gonadal functions in both males and females. They include FOLLICLE STIMULATING HORMONE that stimulates germ cell maturation (OOGENESIS; SPERMATOGENESIS), and LUTEINIZING HORMONE that stimulates the production of sex steroids (ESTROGENS; PROGESTERONE; ANDROGENS). Pituitary Gonadotropins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Dawson, and B K Follett, and A R Goldsmith, and T J Nicholls
April 1991, General and comparative endocrinology,
A Dawson, and B K Follett, and A R Goldsmith, and T J Nicholls
August 1995, General and comparative endocrinology,
A Dawson, and B K Follett, and A R Goldsmith, and T J Nicholls
June 2000, The Journal of experimental zoology,
A Dawson, and B K Follett, and A R Goldsmith, and T J Nicholls
April 1984, The Journal of endocrinology,
A Dawson, and B K Follett, and A R Goldsmith, and T J Nicholls
December 1982, General and comparative endocrinology,
A Dawson, and B K Follett, and A R Goldsmith, and T J Nicholls
July 1985, Journal of reproduction and fertility,
Copied contents to your clipboard!