Halothane-induced alterations of glucose and pyruvate metabolism in rat cerebra synaptosomes. 1985

G V Johnson, and C R Hartzell

Synaptosomes isolated from rat cerebra were used to study the effects of the inhalational anesthetic, halothane, on cholinergic processes. To identify possible mechanisms responsible for the depression of acetylcholine synthesis, we examined the effects of halothane on precursor metabolite metabolism involved with supplying the cytosol with acetyl-CoA for acetylcholine synthesis. Three percent halothane/air (vol/vol) depressed 14CO2 evolution from labeled pyruvate and glucose. Steady-state 14CO2 evolution from [1-14C]glucose was depressed 84% by halothane, while 14CO2 evolution from [6-14C]glucose and [3,4-14C]glucose was decreased 67 and 52%, respectively, when compared with control conditions. Halothane inhibited the activities of both pyruvate dehydrogenase (14% depression) and ATP-citrate lyase (32% depression). Total synaptosomal acetyl-CoA concentrations were unaffected by halothane. Three percent halothane/air (vol/vol) caused a 77% increase in medium glucose depletion rate from 1.38 nmol (mg protein)-1 min-1 to 2.44 nmol (mg protein)-1 min-1. Production of lactate by the synaptosomes in the presence of halothane increased by 231% from a control rate of 1.44 nmol (mg protein)-1 min-1 to 4.77 nmol (mg protein)-1 min-1. Lactate production rate from pyruvate was also enhanced by 56% in the presence of halothane. These data lend support to the concept that the NAD+/NADH potential may be involved in the halothane-induced depression of acetylcholine synthesis.

UI MeSH Term Description Entries
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D000105 Acetyl Coenzyme A Acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent. Acetyl CoA,Acetyl-CoA,CoA, Acetyl,Coenzyme A, Acetyl
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G V Johnson, and C R Hartzell
April 1984, Biochimica et biophysica acta,
G V Johnson, and C R Hartzell
August 1977, Journal of neurochemistry,
G V Johnson, and C R Hartzell
October 1984, The American journal of physiology,
G V Johnson, and C R Hartzell
July 1982, Journal of neurochemistry,
G V Johnson, and C R Hartzell
May 1992, Proceedings of the National Academy of Sciences of the United States of America,
G V Johnson, and C R Hartzell
April 1984, Neurochemical research,
G V Johnson, and C R Hartzell
May 1977, Anesthesiology,
G V Johnson, and C R Hartzell
September 1978, British journal of anaesthesia,
G V Johnson, and C R Hartzell
September 1998, Anesthesia and analgesia,
Copied contents to your clipboard!