The amino acid sequence of thiogalactoside transacetylase of Escherichia coli. 1985

A V Fowler, and M A Hediger, and R E Musso, and I Zabin

The amino acid sequence of thiogalactoside transacetylase, a dimer, has been determined. The monomer contains 202 amino acid residues in a single polypeptide chain and has a molecular weight of 22,671. The analysis was carried out by treatment of the carboxymethylated protein with cyanogen bromide and with trypsin. All seven cyanogen bromide peptides were isolated in pure form and were ordered by peptides isolated from tryptic digests. The sequence analysis was aided by determination of the DNA sequence of the lacA gene. The amino terminus of the protein is heterogenous because the initiator methionine is only partially cleaved. Another rather unusual feature of this cytoplasmic protein is a very hydrophobic segment in the center portion of the chain. Comparison of the amino acid sequence of thiogalactoside transacetylase to those of the lac repressor, beta-galactosidase, and lactose permease did not reveal any marked similarities. Therefore, there is no obvious evolutionary relatedness among proteins of the Lactose Operon.

UI MeSH Term Description Entries
D007763 Lac Operon The genetic unit consisting of three structural genes, an operator and a regulatory gene. The regulatory gene controls the synthesis of the three structural genes: BETA-GALACTOSIDASE and beta-galactoside permease (involved with the metabolism of lactose), and beta-thiogalactoside acetyltransferase. Lac Gene,LacZ Genes,Lactose Operon,Gene, Lac,Gene, LacZ,Genes, Lac,Genes, LacZ,Lac Genes,Lac Operons,LacZ Gene,Lactose Operons,Operon, Lac,Operon, Lactose,Operons, Lac,Operons, Lactose
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003488 Cyanogen Bromide Cyanogen bromide (CNBr). A compound used in molecular biology to digest some proteins and as a coupling reagent for phosphoroamidate or pyrophosphate internucleotide bonds in DNA duplexes. Bromide, Cyanogen
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000123 Acetyltransferases Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1. Acetyltransferase
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

A V Fowler, and M A Hediger, and R E Musso, and I Zabin
July 1980, Journal of bacteriology,
A V Fowler, and M A Hediger, and R E Musso, and I Zabin
April 1969, Biochimica et biophysica acta,
A V Fowler, and M A Hediger, and R E Musso, and I Zabin
January 1962, The Journal of biological chemistry,
A V Fowler, and M A Hediger, and R E Musso, and I Zabin
September 1967, The Journal of biological chemistry,
A V Fowler, and M A Hediger, and R E Musso, and I Zabin
October 1963, The Journal of biological chemistry,
A V Fowler, and M A Hediger, and R E Musso, and I Zabin
November 1964, Journal of molecular biology,
A V Fowler, and M A Hediger, and R E Musso, and I Zabin
August 1966, Journal of molecular biology,
A V Fowler, and M A Hediger, and R E Musso, and I Zabin
January 1965, The Journal of biological chemistry,
A V Fowler, and M A Hediger, and R E Musso, and I Zabin
February 1984, Analytical biochemistry,
A V Fowler, and M A Hediger, and R E Musso, and I Zabin
January 1983, The Journal of biological chemistry,
Copied contents to your clipboard!