Hormonal regulation of activities of 4-ene-5 beta- and 5 alpha-reductases and 17 beta-hydroxy-dehydrogenase in immature golden hamster testis. 1985

H Yabumoto, and F Ikoma, and M Takeyama, and M Tsuji, and K Matsumoto

We have reported [1-3] in immature golden hamster testis that 5 beta-reductase is localized in the tubular nongerm cells, while 5 alpha-reductase is present in the interstitial tissue and that the 17 beta-hydroxy-dehydrogenase activity is found predominantly in the tubular nongerm cells. Hormonal regulation of these enzyme activities was examined in the present study. Male golden hamsters were hypophysectomized on day 22 after birth. The hypophysectomized hamsters in groups of 3-8 were injected daily with 10 micrograms NIH-LH-S19, 50 micrograms NIAMD-Rat-FSH-B-1, 8 or 16 micrograms NIAMD-oFSH-13, 8 micrograms NIAMD-oFSH-13 plus 5 or 10 micrograms NIH-LH-S19, 1 mg testosterone propionate or saline for 5 days starting from day 23. Testicular homogenates of the treated hamsters and intact hamsters on day 28 were incubated with [14C]4-androstene-3,17-dione and NADPH, and enzyme activity (nmol/testes/h) was estimated. The activities of 5 beta- and 5 alpha-reductases and 17 beta-hydroxy-dehydrogenase decreased significantly 6 days after hypophysectomy. In the hypophysectomized hamster testis, a distinct response to FSH but not to LH in the activities of 5 beta-reductase and 17 beta-hydroxy-dehydrogenase was found. The injection of LH in addition to FSH showed no significant additive effects on these enzyme activities. The 5 alpha-reductase activity was stimulated significantly by LH plus FSH but not by LH alone, FSH alone or androgen. These results show that 5 beta-reduction of 4-ene-3-ketosteroids takes place in the Sertoli cells under the influence of FSH while 5 alpha-reduction occurs in the interstitial cells under the influence of LH and FSH in immature hamster testis.

UI MeSH Term Description Entries
D007016 Hypophysectomy Surgical removal or destruction of the hypophysis, or pituitary gland. (Dorland, 28th ed) Hypophysectomies
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013737 Testis The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS. Testicles,Testes,Testicle
D013741 3-Oxo-5-alpha-Steroid 4-Dehydrogenase An enzyme that catalyzes the reduction of TESTOSTERONE to 5-ALPHA DIHYDROTESTOSTERONE. 3-Keto-5-alpha-Steroid delta-4-Dehydrogenase,5-alpha-Reductase, Testosterone,Testosterone 5-alpha-Reductase,Testosterone delta-4-5-alpha-Reductase,3-oxo-5 alpha-Steroid 4-Dehydrogenase (NADP+),3-oxo-5alpha-Steroid 4-Dehydrogenase (NADP+),4-Ene-3-Oxosteroid-5alpha-Reductase,4-Ene-5-alpha-Reductase,NADH-5-alpha-Reductase,NADPH delta(4)-3-Ketosteroid 5 alpha-Oxidoreductase,Steroid 5-alpha-Reductase,Steroid 5Alpha Reductase,Steroid delta-4-5-alpha Reductase,delta 4-3-keto Steroid 5 alpha-Oxidoreductase,delta(4)-3-Ketosteroid-5alpha-Reductase,delta4-3-ketosteroid 5alpha-Oxidoreductase,3 Keto 5 alpha Steroid delta 4 Dehydrogenase,3 Oxo 5 alpha Steroid 4 Dehydrogenase,4 Ene 3 Oxosteroid 5alpha Reductase,4 Ene 5 alpha Reductase,5 alpha Reductase, Testosterone,5-alpha-Reductase, Steroid,5Alpha Reductase, Steroid,5alpha-Oxidoreductase, delta4-3-ketosteroid,NADH 5 alpha Reductase,Reductase, Steroid 5Alpha,Reductase, Steroid delta-4-5-alpha,Steroid 5 alpha Reductase,Steroid delta 4 5 alpha Reductase,Testosterone 5 alpha Reductase,Testosterone delta 4 5 alpha Reductase,delta 4 3 keto Steroid 5 alpha Oxidoreductase,delta-4-5-alpha Reductase, Steroid,delta-4-5-alpha-Reductase, Testosterone,delta-4-Dehydrogenase, 3-Keto-5-alpha-Steroid,delta4 3 ketosteroid 5alpha Oxidoreductase

Related Publications

H Yabumoto, and F Ikoma, and M Takeyama, and M Tsuji, and K Matsumoto
June 1983, Journal of steroid biochemistry,
H Yabumoto, and F Ikoma, and M Takeyama, and M Tsuji, and K Matsumoto
July 1982, Endocrinology,
H Yabumoto, and F Ikoma, and M Takeyama, and M Tsuji, and K Matsumoto
August 1984, Journal of steroid biochemistry,
H Yabumoto, and F Ikoma, and M Takeyama, and M Tsuji, and K Matsumoto
October 1979, Journal of steroid biochemistry,
H Yabumoto, and F Ikoma, and M Takeyama, and M Tsuji, and K Matsumoto
June 1980, Journal of steroid biochemistry,
H Yabumoto, and F Ikoma, and M Takeyama, and M Tsuji, and K Matsumoto
February 1982, Journal of steroid biochemistry,
H Yabumoto, and F Ikoma, and M Takeyama, and M Tsuji, and K Matsumoto
January 1987, Journal of steroid biochemistry,
H Yabumoto, and F Ikoma, and M Takeyama, and M Tsuji, and K Matsumoto
October 1986, Journal of steroid biochemistry,
H Yabumoto, and F Ikoma, and M Takeyama, and M Tsuji, and K Matsumoto
June 1984, Journal of steroid biochemistry,
H Yabumoto, and F Ikoma, and M Takeyama, and M Tsuji, and K Matsumoto
December 1981, Journal of steroid biochemistry,
Copied contents to your clipboard!