Structure and sequence divergence of two archaebacterial genes. 1985

D Cue, and G S Beckler, and J N Reeve, and J Konisky

The DNA sequences of a region that includes the hisA gene of two related methanogenic archaebacteria, Methanococcus voltae and Methanococcus vannielii, have been compared. Both organisms show a similar genome organization in this region, displaying three open reading frames (ORFs) separated by regions of very high A + T content. Two of the ORFs, including ORFHisA, show significant DNA sequence homology. As might be expected for organisms having a genome that is A + T-rich, there is a high preference for A and U as the third base in codons. Although the regions upstream of the structural genes contain prokaryotic-like promoter sequences, it is not known whether they are recognized as promoters in these archaebacterial cells. A ribosome binding site, G-G-T-G, is located 6 base pairs preceding the ATG translation initiation sequence of both hisA genes. The sequences upstream of the two hisA genes show only limited sequence homology. The M. voltae intergenic region contains four tandemly arranged repetitions of an 11-base-pair sequence, whereas the M. vannielii sequence contains both direct and inverted repetitive sequences. Based on the degree of hisA sequence homology, we conclude that M. voltae and M. vannielii are less closely related taxonomically than are members of the enteric group of eubacteria.

UI MeSH Term Description Entries
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D001105 Archaea One of the three domains of life (the others being BACTERIA and Eukarya), formerly called Archaebacteria under the taxon Bacteria, but now considered separate and distinct. They are characterized by: (1) the presence of characteristic tRNAs and ribosomal RNAs; (2) the absence of peptidoglycan cell walls; (3) the presence of ether-linked lipids built from branched-chain subunits; and (4) their occurrence in unusual habitats. While archaea resemble bacteria in morphology and genomic organization, they resemble eukarya in their method of genomic replication. The domain contains at least four kingdoms: CRENARCHAEOTA; EURYARCHAEOTA; NANOARCHAEOTA; and KORARCHAEOTA. Archaebacteria,Archaeobacteria,Archaeon,Archebacteria
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

D Cue, and G S Beckler, and J N Reeve, and J Konisky
January 1985, Journal of molecular evolution,
D Cue, and G S Beckler, and J N Reeve, and J Konisky
May 1993, Infection and immunity,
D Cue, and G S Beckler, and J N Reeve, and J Konisky
September 2003, Genome research,
D Cue, and G S Beckler, and J N Reeve, and J Konisky
November 1990, Seikagaku. The Journal of Japanese Biochemical Society,
D Cue, and G S Beckler, and J N Reeve, and J Konisky
October 2002, Journal of molecular evolution,
D Cue, and G S Beckler, and J N Reeve, and J Konisky
March 1991, Journal of bacteriology,
D Cue, and G S Beckler, and J N Reeve, and J Konisky
February 2007, Molecular biology and evolution,
D Cue, and G S Beckler, and J N Reeve, and J Konisky
April 2020, Immunogenetics,
D Cue, and G S Beckler, and J N Reeve, and J Konisky
January 1992, Biochemical Society symposium,
D Cue, and G S Beckler, and J N Reeve, and J Konisky
January 2012, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!