Respiratory heat loss is not the sole stimulus for bronchoconstriction induced by isocapnic hyperpnea with dry air. 1985

W L Eschenbacher, and D Sheppard

It is uncertain if respiratory heat loss or respiratory water loss is the stimulus for bronchoconstriction induced by isocapnic hyperpnea or exercise with dry air in subjects with asthma. We partially separated these 2 stimuli by having 18 subjects with asthma breathe dry air (0 mg/L water content) at increasing ventilations by isocapnic hyperpnea while we measured the increase in specific airway resistance (SRaw). The study was divided into 2 phases. In Phase 1, we used an apparatus with a single respiratory valve and evaluated the subjects' responses at 3 different inspired temperatures (-8.4, 20.5, and 39.4 degrees C). Seven of the subjects had esophageal catheters with 2 thermocouples in place to measure retrocardiac and retrotracheal temperatures. In this phase, we found that there were no significant differences in the ventilation required to cause a 100% increase in SRaw among the 3 different inspired temperatures (48.4 L/min, cold; 47.5 L/min, room temperature; 44.2 L/min, hot), even though the retrotracheal temperature fell more when the subjects breathed cold air at 40 L/min (2.1 degrees C) than when they breathed hot air (1.2 degrees C), suggesting greater airway cooling with the cold air. In Phase 2, in order to accurately measure inspired and exhaled temperatures and exhaled water content, we used 2 separate systems for delivering the inspired air and collecting the exhaled air at 2 different inspired temperatures (-21.4 and 38.9 degrees C). Again, we found that there was no significant difference in the ventilation required to cause a 100% increase in SRaw between the 2 different inspired temperatures (28.3 L/min, cold; 33.6 L/min, hot). When the subjects inhaled cold air, exhaled temperature was warmer than previously reported.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008722 Methods A series of steps taken in order to conduct research. Techniques,Methodological Studies,Methodological Study,Procedures,Studies, Methodological,Study, Methodological,Method,Procedure,Technique
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D012120 Respiration Disorders Diseases of the respiratory system in general or unspecified or for a specific respiratory disease not available. Disorder, Respiration,Disorders, Respiration,Respiration Disorder
D001831 Body Temperature The measure of the level of heat of a human or animal. Organ Temperature,Body Temperatures,Organ Temperatures,Temperature, Body,Temperature, Organ,Temperatures, Body,Temperatures, Organ
D001833 Body Temperature Regulation The processes of heating and cooling that an organism uses to control its temperature. Heat Loss,Thermoregulation,Regulation, Body Temperature,Temperature Regulation, Body,Body Temperature Regulations,Heat Losses,Loss, Heat,Losses, Heat,Regulations, Body Temperature,Temperature Regulations, Body,Thermoregulations
D001986 Bronchial Spasm Spasmodic contraction of the smooth muscle of the bronchi. Bronchospasm,Bronchial Spasms,Bronchospasms,Spasm, Bronchial,Spasms, Bronchial
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold
D005260 Female Females

Related Publications

W L Eschenbacher, and D Sheppard
September 1982, The American review of respiratory disease,
W L Eschenbacher, and D Sheppard
August 1988, Journal of applied physiology (Bethesda, Md. : 1985),
W L Eschenbacher, and D Sheppard
March 1989, Journal of applied physiology (Bethesda, Md. : 1985),
W L Eschenbacher, and D Sheppard
February 1993, Journal of applied physiology (Bethesda, Md. : 1985),
W L Eschenbacher, and D Sheppard
January 1980, Respiration; international review of thoracic diseases,
W L Eschenbacher, and D Sheppard
February 1991, Journal of applied physiology (Bethesda, Md. : 1985),
W L Eschenbacher, and D Sheppard
March 1994, Journal of applied physiology (Bethesda, Md. : 1985),
W L Eschenbacher, and D Sheppard
February 1997, Journal of applied physiology (Bethesda, Md. : 1985),
W L Eschenbacher, and D Sheppard
July 1987, British journal of clinical pharmacology,
Copied contents to your clipboard!