[Tetracycline resistance controlled by plasmids of Pseudomonas aeruginosa with a wide spectrum of bacterial hosts]. 1985

E V Kozlova, and A M Boronin

PBS222 and pBS223 plasmids with a wide spectrum of bacterial hosts detected in strains of P. aeruginosa control resistance of the cells of P. aeruginosa ML4262 (PAO) and E. coli C600 to 300 and 200 micrograms/ml of oxytetracycline respectively increasing 15 and 20 times their resistance to the antibiotics. The constant of the antibiotic elimination from the cells of P. aeruginosa ML4262 containing pBS223 plasmid is 3.5 times higher than the entry constant, while the constants of the antibiotic entry and elimination in the cells containing pBS222 plasmid are almost the same. Accumulation of tetracycline by the cells containing pBS223 plasmid decreases 2.8 times and that by the cells containing pBS222 plasmid decreases 1.7 times. The determinants of tetracycline resistance in pBS222 and pBS223 plasmids may be referred to the class TetC.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D010118 Oxytetracycline A TETRACYCLINE analog isolated from the actinomycete STREPTOMYCES RIMOSUS and used in a wide variety of clinical conditions. Hydroxytetracycline,Bisolvomycin,Geomycin,Oxyterracin,Oxyterracine,Oxytetracid,Oxytetracycline Anhydrous,Oxytetracycline Calcium,Oxytetracycline Dihydrate,Oxytetracycline Hydrochloride,Oxytetracycline Monohydrochloride,Oxytetracycline Sulfate (2:1),Oxytetracycline, (4a beta,5 beta,5a beta,12a beta)-Isomer,Oxytetracycline, (5 beta)-Isomer,Oxytetracycline, Anhydrous,Oxytetracycline, Calcium (1:1) Salt,Oxytetracycline, Disodium Salt, Dihydrate,Oxytetracycline, Sodium Salt,Terramycin
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D011815 R Factors A class of plasmids that transfer antibiotic resistance from one bacterium to another by conjugation. R Factor,R Plasmid,R Plasmids,Resistance Factor,Resistance Factors,Factor, R,Factor, Resistance,Factors, R,Factors, Resistance,Plasmid, R,Plasmids, R
D002751 Chlortetracycline A TETRACYCLINE with a 7-chloro substitution. Aureocyclin,Aureomycin,Aureomycine,Biomycin,Chlorotetracycline,Chlortetracycline Bisulfate,Chlortetracycline Hydrochloride,Chlortetracycline Monohydrochloride,Chlortetracycline Sulfate (1:1),Chlortetracycline Sulfate (2:1),Chlortetracycline, 4-Epimer,Chlortetracycline, Calcium Salt,4-Epimer Chlortetracycline,Bisulfate, Chlortetracycline,Calcium Salt Chlortetracycline,Chlortetracycline, 4 Epimer,Hydrochloride, Chlortetracycline,Monohydrochloride, Chlortetracycline,Salt Chlortetracycline, Calcium
D004318 Doxycycline A synthetic tetracycline derivative with similar antimicrobial activity. 2-Naphthacenecarboxamide, 4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-, (4S-(4alpha,4aalpha,5alpha,5aalpha,6alpha,12aalpha))-,Alpha-6-Deoxyoxytetracycline,Atridox,BMY-28689,BU-3839T,Doryx,Doxycycline Calcium,Doxycycline Calcium Salt (1:2),Doxycycline Hemiethanolate,Doxycycline Hyclate,Doxycycline Monohydrate,Doxycycline Monohydrochloride, 6-epimer,Doxycycline Monohydrochloride, Dihydrate,Doxycycline Phosphate (1:1),Doxycycline-Chinoin,Hydramycin,Oracea,Periostat,Vibra-Tabs,Vibramycin,Vibramycin Novum,Vibravenos,Alpha 6 Deoxyoxytetracycline,BMY 28689,BMY28689,BU 3839T,BU3839T,Doxycycline Chinoin,Doxycycline Monohydrochloride, 6 epimer,Vibra Tabs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006090 Gram-Negative Bacteria Bacteria which lose crystal violet stain but are stained pink when treated by Gram's method. Gram Negative Bacteria
D000421 Alcaligenes A genus of gram-negative, aerobic, motile bacteria that occur in water and soil. Some are common inhabitants of the intestinal tract of vertebrates. These bacteria occasionally cause opportunistic infections in humans.
D013754 Tetracyclines Closely congeneric derivatives of the polycyclic naphthacenecarboxamide. (Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1117)

Related Publications

E V Kozlova, and A M Boronin
November 1990, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
E V Kozlova, and A M Boronin
August 1979, Antibiotiki,
E V Kozlova, and A M Boronin
June 1981, Antibiotiki,
E V Kozlova, and A M Boronin
September 2009, Journal of medical microbiology,
E V Kozlova, and A M Boronin
September 1983, Genetika,
E V Kozlova, and A M Boronin
September 1974, Antimicrobial agents and chemotherapy,
E V Kozlova, and A M Boronin
September 1984, Antibiotiki,
E V Kozlova, and A M Boronin
February 1982, The Indian journal of medical research,
E V Kozlova, and A M Boronin
November 1984, The Indian journal of medical research,
E V Kozlova, and A M Boronin
August 1975, The Journal of antibiotics,
Copied contents to your clipboard!