Aggregation equilibria of tyrosinase of Harding-Passey mouse melanoma. 1985

J C Garcia-Borron, and F Solano, and J L Iborra, and J A Lozano

The purification of two isoenzymes of tyrosinase has been carried out in Harding-Passey mouse melanoma. One is found in the cytosol and the other one bound to melanosomes. Both migrate as single bands on sodium dodecyl sulphate/polyacrylamide gels, having an apparent Mr of 58 000. Solubilized particulate tyrosinase showed an aggregation equilibrium involving a monomer, tetramer, octamer and a high-Mr micellar form with Brij 35, the solubilizing agent. H.p.l.c. studies indicated a interconversion between those species, the monomer contribution increasing with the sample dilution. The tetramer and the octamer probably represent the predominant forms in vivo. Soluble tyrosinase showed a simpler aggregation equilibrium, involving two forms, monomer and tetramer, with the same interconversion pattern. Fluorescence studies suggested that tryptophan residues were exposed to the aqueous environment when tyrosinase was dissociated by dilution. Tyrosinase shows a tendency to aggregate, at low protein concentration, and a resistance to dissociation by urea or SDS so remarkable that gel-permeation chromatography in 4M-urea does not affect the equilibrium, and the band obtained on SDS/polyacrylamide-gel electrophoresis is a dimer.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008297 Male Males
D008545 Melanoma A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445) Malignant Melanoma,Malignant Melanomas,Melanoma, Malignant,Melanomas,Melanomas, Malignant
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004156 Catechol Oxidase An enzyme of the oxidoreductase class that catalyzes the reaction between catechol and oxygen to yield benzoquinone and water. It is a complex of copper-containing proteins that acts also on a variety of substituted catechols. EC 1.10.3.1. Diphenol Oxidases,Diphenol Oxidase,Polyphenol Oxidase,Polyphenoloxidase,Oxidase, Catechol,Oxidase, Diphenol,Oxidase, Polyphenol,Oxidases, Diphenol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J C Garcia-Borron, and F Solano, and J L Iborra, and J A Lozano
January 1988, Cancer letters,
J C Garcia-Borron, and F Solano, and J L Iborra, and J A Lozano
August 1983, Archives of biochemistry and biophysics,
J C Garcia-Borron, and F Solano, and J L Iborra, and J A Lozano
January 1957, Texas reports on biology and medicine,
J C Garcia-Borron, and F Solano, and J L Iborra, and J A Lozano
June 1971, The Journal of investigative dermatology,
J C Garcia-Borron, and F Solano, and J L Iborra, and J A Lozano
November 1985, Biochemistry international,
J C Garcia-Borron, and F Solano, and J L Iborra, and J A Lozano
January 1985, The International journal of biochemistry,
J C Garcia-Borron, and F Solano, and J L Iborra, and J A Lozano
January 1983, General pharmacology,
J C Garcia-Borron, and F Solano, and J L Iborra, and J A Lozano
January 1987, The International journal of biochemistry,
J C Garcia-Borron, and F Solano, and J L Iborra, and J A Lozano
January 1989, Cell biochemistry and function,
J C Garcia-Borron, and F Solano, and J L Iborra, and J A Lozano
February 1963, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!