The metabolic fate of pargyline in rat liver microsomes. 1985

A M Weli, and B Lindeke

The availability of a sensitive analytical assay for the simultaneous quantitation of pargyline (PARG) and four of its major metabolites have made possible a detailed study on the metabolism of the drug in rat liver microsomes with emphasis put on comparisons between optional N-dealkylation reactions and N-oxide formation. Pargyline is a lipophilic amine with a low pKa-value of 6.6 and undergoes extensive metabolism. The conversion of the substrate is rapid and comprizes three N-dealkylation and one N-oxidation reactions, yielding N-benzylpropargylamine (BPA), N-methyl-propargylamine (MPA), N-benzylmethylamine (BMA) and pargyline N-oxide (PNO), respectively. Phenobarbital (PB) pretreatment of the rats causes a pronounced increase in the metabolism with about 90% of the substrate being consumed within the first minute of incubation at 100 microM substrate concentration. At this substrate concentration the most pronounced induction is seen in the formation of BPA and also in its further metabolism, while levels of BMA and MPA remain fairly constant. Pargyline N-oxide is the most abundant metabolite in microsomes from untreated rats and its formation is not increased by PB induction. Moreover, the inhibition of PNO formation by typical cytochrome P-450 inhibitors is marginal, while that of BPA, BMA and MPA formation is not. N-Debenzylation, yielding MPA, is the least important of the N-dealkylation reactions and the effect of PB induction on this reaction becomes noticeable only at high substrate concentrations. The studies suggest that various cytochrome P-450 enzymes are involved in the N-dealkylation reactions of PARG while N-oxidation appears to occur mainly by a cytochrome P-450-independent pathway. As propiolaldehyde, a potential hepatotoxin, is formed concomitant to BMA, and as PNO, under certain conditions, can decompose to acrolein, another well-known hepatotoxin, both these quantitatively important metabolic routes have to be considered in evaluating the toxicity of pargyline.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010293 Pargyline A monoamine oxidase inhibitor with antihypertensive properties. Pargyline Hydrochloride,Hydrochloride, Pargyline
D011078 Polychlorinated Biphenyls Industrial products consisting of a mixture of chlorinated biphenyl congeners and isomers. These compounds are highly lipophilic and tend to accumulate in fat stores of animals. Many of these compounds are considered toxic and potential environmental pollutants. PCBs,Polychlorinated Biphenyl,Polychlorobiphenyl Compounds,Biphenyl, Polychlorinated,Biphenyls, Polychlorinated,Compounds, Polychlorobiphenyl
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002248 Carbon Monoxide Carbon monoxide (CO). A poisonous colorless, odorless, tasteless gas. It combines with hemoglobin to form carboxyhemoglobin, which has no oxygen carrying capacity. The resultant oxygen deprivation causes headache, dizziness, decreased pulse and respiratory rates, unconsciousness, and death. (From Merck Index, 11th ed) Monoxide, Carbon
D003640 Dealkylation The removing of alkyl groups from a compound. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Dealkylations
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A M Weli, and B Lindeke
January 1978, Pharmacology,
A M Weli, and B Lindeke
February 1992, Nuclear medicine communications,
A M Weli, and B Lindeke
January 1998, Yao xue xue bao = Acta pharmaceutica Sinica,
A M Weli, and B Lindeke
August 1987, Biochemical pharmacology,
A M Weli, and B Lindeke
January 1981, Advances in experimental medicine and biology,
A M Weli, and B Lindeke
January 1978, Drug metabolism and disposition: the biological fate of chemicals,
A M Weli, and B Lindeke
September 2007, Electrochemistry communications,
A M Weli, and B Lindeke
June 2003, Drug metabolism and disposition: the biological fate of chemicals,
A M Weli, and B Lindeke
August 1969, The Biochemical journal,
Copied contents to your clipboard!