Evidence for HCO3- conductance pathways in nutrient membrane of bullfrog antrum. 1985

M Schwartz, and G Carrasquer, and W S Rehm

The effect of changing the nutrient HCO3- concentration on potential difference (PD) and resistance in bullfrog antrum bathing in CI- media was determined. Changes in HCO3- concentration were from 25 mM to several lower concentrations and back to 25 mM. A plot of /delta PD/ versus log [HCO3-] gave a linear relation for changes of HCO3- concentration from 25 down to 3.1 mM and back to 25 mM but deviated to some extent for changes to 1.6 mM. In these experiments, changes from higher to lower HCO3- concentrations gave a less rapid initial PD response than those in the reverse direction. This result eliminated H+ conductance pathways as being predominant. Experiments were done in which in the first part changes were made in nutrient solution from 5 percent CO2 and 25 mM HCO3- to 0.6 percent CO2 and 3 mM HCO3- and in the second part the same changes with a simultaneous changes of secretory solution from 5 percent to 10 percent CO2. The magnitude of PD decrease was greater by 4.5 mV in the second part. This result indicated that HCO3- conductance pathways rather than OH- conductance pathways are predominated . There was no evidence of HCO3-, OH-, and H+ conductance pathways in secretory membranes.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011706 Pyloric Antrum The region between the sharp indentation at the lower third of the STOMACH (incisura angularis) and the junction of the PYLORUS with the DUODENUM. Pyloric antral glands contain mucus-secreting cells and gastrin-secreting endocrine cells (G CELLS). Antrum, Pyloric,Gastric Antrum,Antrum, Gastric,Antrums, Gastric,Antrums, Pyloric,Gastric Antrums,Pyloric Antrums
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006878 Hydroxides Inorganic compounds that contain the OH- group.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid

Related Publications

M Schwartz, and G Carrasquer, and W S Rehm
November 1992, Gastroenterology,
M Schwartz, and G Carrasquer, and W S Rehm
September 1998, Canadian journal of physiology and pharmacology,
M Schwartz, and G Carrasquer, and W S Rehm
August 1989, The American journal of physiology,
M Schwartz, and G Carrasquer, and W S Rehm
October 1989, The American journal of physiology,
M Schwartz, and G Carrasquer, and W S Rehm
July 1990, Biochimica et biophysica acta,
M Schwartz, and G Carrasquer, and W S Rehm
December 1985, Neuroscience research,
M Schwartz, and G Carrasquer, and W S Rehm
November 2003, American journal of physiology. Gastrointestinal and liver physiology,
M Schwartz, and G Carrasquer, and W S Rehm
May 1983, The American journal of physiology,
M Schwartz, and G Carrasquer, and W S Rehm
September 1989, Pflugers Archiv : European journal of physiology,
M Schwartz, and G Carrasquer, and W S Rehm
September 1980, The American journal of physiology,
Copied contents to your clipboard!