Binding of the glucocorticoid receptor complex to the nucleosomal core in the P1798 mouse lymphosarcoma. 1985

M M Ip, and R J Milholland, and W K Shea, and L G Dressler

Binding of the glucocorticoid receptor complex to nucleosomes has been studied using the mouse P1798 lymphosarcoma. Cells were incubated with [3H]triamcinolone acetonide (TA), and nuclei prepared and digested with 3 different concentrations of micrococcal nuclease. After fractionation with EDTA and NaCl, it was observed that [3H]TA bound with similar specific radioactivity to mononucleosomes containing both core and linker DNA, of 183 +/- 5, and 168 +/- 4 base pair lengths, respectively, as well as to core size DNA, of 148 +/- 3 base pair length, suggesting that the glucocorticoid receptor bound to the core portion of the nucleosome. Steroid binding was found to be associated with regions of the nucleosome that were depleted in histone H1 and enriched in high mobility group (HMG) proteins 1 and 2; only negligible binding was noted in nucleosomes enriched in histone H1 and depleted in HMG proteins. In addition to binding to core nucleosomes, the glucocorticoid receptor complex was also shown to bind to a fraction sedimenting at 5-6 S on sucrose gradients characterized by subnucleosome and mononucleosome size DNA, as well as by core histones. While binding of the steroid receptor complex to linker regions of the nucleosome cannot be ruled out, this data would appear to present the first concrete evidence that glucocorticoid binding, at least in the P1798 lymphosarcoma, is to core nucleosomes. Some caution in interpretation of the results is indicated, however, on 2 points: (1) receptor redistribution during nuclease digestion cannot be ruled out; (2) only the binding of a small proportion of the steroid receptor complex may be physiologically relevant.

UI MeSH Term Description Entries
D008228 Lymphoma, Non-Hodgkin Any of a group of malignant tumors of lymphoid tissue that differ from HODGKIN DISEASE, being more heterogeneous with respect to malignant cell lineage, clinical course, prognosis, and therapy. The only common feature among these tumors is the absence of giant REED-STERNBERG CELLS, a characteristic of Hodgkin's disease. Non-Hodgkin Lymphoma,Diffuse Mixed Small and Large Cell Lymphoma,Diffuse Mixed-Cell Lymphoma,Diffuse Small Cleaved-Cell Lymphoma,Diffuse Undifferentiated Lymphoma,Lymphatic Sarcoma,Lymphoma, Atypical Diffuse Small Lymphoid,Lymphoma, Diffuse,Lymphoma, Diffuse, Mixed Lymphocytic-Histiocytic,Lymphoma, High-Grade,Lymphoma, Intermediate-Grade,Lymphoma, Low-Grade,Lymphoma, Mixed,Lymphoma, Mixed Cell, Diffuse,Lymphoma, Mixed Lymphocytic-Histiocytic,Lymphoma, Mixed Small and Large Cell, Diffuse,Lymphoma, Mixed-Cell,Lymphoma, Mixed-Cell, Diffuse,Lymphoma, Non-Hodgkin's,Lymphoma, Non-Hodgkin, Familial,Lymphoma, Non-Hodgkins,Lymphoma, Nonhodgkin's,Lymphoma, Nonhodgkins,Lymphoma, Pleomorphic,Lymphoma, Small Cleaved Cell, Diffuse,Lymphoma, Small Cleaved-Cell, Diffuse,Lymphoma, Small Non-Cleaved-Cell,Lymphoma, Small Noncleaved-Cell,Lymphoma, Small and Large Cleaved-Cell, Diffuse,Lymphoma, Undifferentiated,Lymphoma, Undifferentiated, Diffuse,Lymphosarcoma,Mixed Small and Large Cell Lymphoma, Diffuse,Mixed-Cell Lymphoma,Mixed-Cell Lymphoma, Diffuse,Non-Hodgkin's Lymphoma,Reticulosarcoma,Reticulum Cell Sarcoma,Reticulum-Cell Sarcoma,Sarcoma, Lymphatic,Sarcoma, Reticulum-Cell,Small Cleaved-Cell Lymphoma, Diffuse,Small Non-Cleaved-Cell Lymphoma,Small Noncleaved-Cell Lymphoma,Undifferentiated Lymphoma,Diffuse Lymphoma,Diffuse Lymphomas,Diffuse Mixed Cell Lymphoma,Diffuse Mixed-Cell Lymphomas,Diffuse Small Cleaved Cell Lymphoma,Diffuse Undifferentiated Lymphomas,High-Grade Lymphoma,High-Grade Lymphomas,Intermediate-Grade Lymphoma,Intermediate-Grade Lymphomas,Low-Grade Lymphoma,Low-Grade Lymphomas,Lymphatic Sarcomas,Lymphocytic-Histiocytic Lymphoma, Mixed,Lymphocytic-Histiocytic Lymphomas, Mixed,Lymphoma, Diffuse Mixed-Cell,Lymphoma, Diffuse Undifferentiated,Lymphoma, High Grade,Lymphoma, Intermediate Grade,Lymphoma, Low Grade,Lymphoma, Mixed Cell,Lymphoma, Mixed Lymphocytic Histiocytic,Lymphoma, Non Hodgkin,Lymphoma, Non Hodgkin's,Lymphoma, Non Hodgkins,Lymphoma, Nonhodgkin,Lymphoma, Small Non Cleaved Cell,Lymphoma, Small Noncleaved Cell,Lymphosarcomas,Mixed Cell Lymphoma,Mixed Cell Lymphoma, Diffuse,Mixed Lymphocytic-Histiocytic Lymphoma,Mixed Lymphocytic-Histiocytic Lymphomas,Mixed Lymphoma,Mixed Lymphomas,Mixed-Cell Lymphomas,Non Hodgkin Lymphoma,Non Hodgkin's Lymphoma,Non-Cleaved-Cell Lymphoma, Small,Non-Hodgkins Lymphoma,Noncleaved-Cell Lymphoma, Small,Nonhodgkin's Lymphoma,Nonhodgkins Lymphoma,Pleomorphic Lymphoma,Pleomorphic Lymphomas,Reticulosarcomas,Reticulum Cell Sarcomas,Reticulum-Cell Sarcomas,Sarcoma, Reticulum Cell,Small Cleaved Cell Lymphoma, Diffuse,Small Non Cleaved Cell Lymphoma,Small Non-Cleaved-Cell Lymphomas,Small Noncleaved Cell Lymphoma,Small Noncleaved-Cell Lymphomas,Undifferentiated Lymphoma, Diffuse,Undifferentiated Lymphomas
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D008836 Micrococcal Nuclease An enzyme that catalyzes the endonucleolytic cleavage to 3'-phosphomononucleotide and 3'-phospholigonucleotide end-products. It can cause hydrolysis of double- or single-stranded DNA or RNA. (From Enzyme Nomenclature, 1992) EC 3.1.31.1. Staphylococcal Nuclease,TNase,Thermonuclease,Thermostable Nuclease,Nuclease, Micrococcal,Nuclease, Staphylococcal,Nuclease, Thermostable
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D011987 Receptors, Steroid Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes. Corticosteroid Receptors,Receptors, Corticosteroid,Steroid Receptors,Corticosteroid Receptor,Receptors, Steroids,Steroid Receptor,Receptor, Corticosteroid,Receptor, Steroid,Steroids Receptors
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell

Related Publications

M M Ip, and R J Milholland, and W K Shea, and L G Dressler
May 1995, The Journal of steroid biochemistry and molecular biology,
M M Ip, and R J Milholland, and W K Shea, and L G Dressler
August 1971, Nature: New biology,
M M Ip, and R J Milholland, and W K Shea, and L G Dressler
March 1988, Molecular endocrinology (Baltimore, Md.),
M M Ip, and R J Milholland, and W K Shea, and L G Dressler
January 1980, Journal of the National Cancer Institute,
M M Ip, and R J Milholland, and W K Shea, and L G Dressler
September 1981, Cancer research,
M M Ip, and R J Milholland, and W K Shea, and L G Dressler
August 1988, Journal of the National Cancer Institute,
M M Ip, and R J Milholland, and W K Shea, and L G Dressler
March 1971, Biochimica et biophysica acta,
M M Ip, and R J Milholland, and W K Shea, and L G Dressler
January 1992, Zhonghua yi xue za zhi = Chinese medical journal; Free China ed,
Copied contents to your clipboard!