Investigation of the nature of P-induced male recombination in Drosophila melanogaster. 1985

D A Sinclair, and T A Grigliatti

The present study consists of an investigation of P-induced male recombination in Drosophila melanogaster from a number of perspectives. In an initial set of experiments, male recombination induced by several different P strains was examined on both major autosomes. The ability of these P strains to evoke recombination is striking; in many cases it exceeded that of radiation treatment. Also of interest is the apparent nonrandom chromosomal distribution of P-exchange breakpoints. The data suggest that both recombinagenic capacity and distribution pattern of exchange breakpoints may be P-strain specific. In addition to these findings, we have confirmed previous indications that P-induced exchange is reasonably symmetrical and that it frequently occurs during premeiotic stages of spermatogenesis. Moreover, we have established that radiation and P background act additively with regard to the induction of male recombination. The second part of the work involved an analysis of heterochromatic vs. euchromatic recombination induced by several recombinagenically potent P strains. Results of these experiments have confirmed our earlier findings concerning the recombinagenic capacity of p strains. More importantly, it would appear that P-induced exchange in heterochromatin is rare. The induction of various kinds of mutations was also monitored in several of these experiments. The results indicate that the mutagenic potential of the P strains is substantial and of particular interest, that certain types of mutations are P-strain specific. For example, rare heterochromatic lesions were recovered exclusively in the experiment using the h12 strain, whereas a novel pleiotropic mutation occurred at a high frequency only in the T-007 experiment. Our findings are discussed within the context of a model of P-induced exchange.

UI MeSH Term Description Entries
D008297 Male Males
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005260 Female Females
D006570 Heterochromatin The portion of chromosome material that remains condensed and is transcriptionally inactive during INTERPHASE. Heterochromatins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D A Sinclair, and T A Grigliatti
October 1989, Genetical research,
D A Sinclair, and T A Grigliatti
March 1973, Genetics,
D A Sinclair, and T A Grigliatti
December 1992, Genetical research,
D A Sinclair, and T A Grigliatti
February 1995, Molecular & general genetics : MGG,
D A Sinclair, and T A Grigliatti
January 1982, The Journal of heredity,
D A Sinclair, and T A Grigliatti
December 1996, Genetics,
D A Sinclair, and T A Grigliatti
October 1976, Genetics,
Copied contents to your clipboard!