Mitomycin-induced lethality of Escherichia coli cells containing the ColE1 Plasmid: involvement of the kil gene. 1985

S P Zhang, and A Faro, and G Zubay

Escherichia coli cells containing the ColE1 plasmid or related plasmids are killed by considerably lower levels of mitomycin C (MTC) than are plasmid-free cells. Since exposure to MTC induces high levels of synthesis of the plasmid-encoded colicin toxin, it was originally thought that the killing effect was due to the increased levels of colicin. This possibility was discounted when it was shown that deletion mutations in the plasmid lacking most of the colicin (cea) gene still sensitized host cells to MTC. Only when the region containing the cea gene promoter was deleted did the killing effect disappear. This led to the suggestion that transcription originating from the cea gene promoter and not the colicin protein itself was required for killing. Transcription-blocking mutations in the cea gene support this suggestion. It was proposed that there is a gene (kil) located downstream from the cea gene in the same operon that is responsible for MTC killing and colicin transport. The precise location of the kil gene in ColE1 can be predicted by piecing together published sequence information. We used available sequence data to construct a number of well-defined plasmid mutants to further examine the relevance of transcription from the cea promoter and the kil gene to drug-induced killing and colicin transport. The most informative mutant had a small insertion in the kil gene. This mutant behaved as predicted; cells containing it had a greatly lowered sensitivity to MTC and were severely inhibited in the transport of colicin.

UI MeSH Term Description Entries
D008937 Mitomycins A group of methylazirinopyrroloindolediones obtained from certain Streptomyces strains. They are very toxic antibiotics used as ANTINEOPLASTIC AGENTS in some solid tumors. PORFIROMYCIN and MITOMYCIN are the most useful members of the group.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003086 Bacteriocin Plasmids Plasmids encoding bacterial exotoxins (BACTERIOCINS). Bacteriocin Factors,Col Factors,Colicin Factors,Colicin Plasmids,Bacteriocin Factor,Bacteriocin Plasmid,Col Factor,Colicin Factor,Colicin Plasmid,Factor, Bacteriocin,Factor, Col,Factor, Colicin,Factors, Bacteriocin,Factors, Col,Factors, Colicin,Plasmid, Bacteriocin,Plasmid, Colicin,Plasmids, Bacteriocin,Plasmids, Colicin
D003087 Colicins Bacteriocins elaborated by strains of Escherichia coli and related species. They are proteins or protein-lipopolysaccharide complexes lethal to other strains of the same species. Colicin,Colicin E9,Colicine,Colicines,Colicin A,Colicin B,Colicin E,Colicin E1,Colicin E2,Colicin E3,Colicin E8,Colicin HSC10,Colicin Ia,Colicin Ib,Colicin K,Colicin K-K235,Colicin M,Colicin N,Colicin V,Colicins E,Colicins E9,Precolicin E1,Colicin K K235,E9, Colicin
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

S P Zhang, and A Faro, and G Zubay
November 1986, Journal of bacteriology,
S P Zhang, and A Faro, and G Zubay
March 1983, Journal of bacteriology,
S P Zhang, and A Faro, and G Zubay
December 1988, Journal of bacteriology,
S P Zhang, and A Faro, and G Zubay
November 1978, Molecular & general genetics : MGG,
S P Zhang, and A Faro, and G Zubay
April 1981, Journal of bacteriology,
S P Zhang, and A Faro, and G Zubay
January 1994, Bioprocess technology,
S P Zhang, and A Faro, and G Zubay
January 1983, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!