Nucleotide sequence of the Bacillus stearothermophilus alpha-amylase gene. 1985

R Nakajima, and T Imanaka, and S Aiba

The nucleotide sequence of the Bacillus stearothermophilus alpha-amylase gene and its flanking regions was determined. An open reading frame was found, comprising a total of 1,647 base pairs (549 amino acids) and starting from a GUG codon as methionine. It was shown by NH2-terminal amino acid sequence analysis that the extracellular amylase consisted of 515 amino acid residues, which corresponded to a molecular weight of 58,779. Thus the NH2-terminal portion of the gene encodes 34 amino acid residues as a signal peptide. The amino acid sequence deduced from the alpha-amylase gene was fairly homologous (61%) with that of another thermostable amylase from Bacillus amyloliquefaciens.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000516 alpha-Amylases Enzymes that catalyze the endohydrolysis of 1,4-alpha-glycosidic linkages in STARCH; GLYCOGEN; and related POLYSACCHARIDES and OLIGOSACCHARIDES containing 3 or more 1,4-alpha-linked D-glucose units. Taka-Amylase A,alpha-Amylase,Alpha-Amylase Bayer,Maxilase,Mégamylase,alpha-1,4-D-Glucanglucanohydrolase,Alpha Amylase Bayer,AlphaAmylase Bayer,Taka Amylase A,TakaAmylase A,alpha 1,4 D Glucanglucanohydrolase,alpha Amylase,alpha Amylases
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001407 Bacillus A genus of BACILLACEAE that are spore-forming, rod-shaped cells. Most species are saprophytic soil forms with only a few species being pathogenic. Bacillus bacterium
D001411 Geobacillus stearothermophilus A species of GRAM-POSITIVE ENDOSPORE-FORMING BACTERIA in the family BACILLACEAE, found in soil, hot springs, Arctic waters, ocean sediments, and spoiled food products. Bacillus stearothermophilus,Bacillus thermoliquefaciens
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

R Nakajima, and T Imanaka, and S Aiba
June 1989, Journal of general microbiology,
R Nakajima, and T Imanaka, and S Aiba
January 1969, The Journal of biological chemistry,
R Nakajima, and T Imanaka, and S Aiba
January 1991, FEMS microbiology letters,
R Nakajima, and T Imanaka, and S Aiba
December 1984, European journal of biochemistry,
R Nakajima, and T Imanaka, and S Aiba
October 1983, Proceedings of the National Academy of Sciences of the United States of America,
R Nakajima, and T Imanaka, and S Aiba
January 1983, Nucleic acids research,
R Nakajima, and T Imanaka, and S Aiba
June 1988, Nucleic acids research,
R Nakajima, and T Imanaka, and S Aiba
August 1990, Biotechnology and applied biochemistry,
Copied contents to your clipboard!