Genetic control of the murine immune response to cholera toxin. 1985

C O Elson, and W Ealding

This study was undertaken to determine whether previously noted differences in the immune response of inbred strains of mice to cholera toxin (CT) might be under immune response gene control. A series of inbred, congenic, and intra-H-2I region recombinant mouse strains were tested for responsiveness to CT after i.p. immunization with 0.1 micrograms CT in alum. Samples of plasma were collected at intervals before and after priming and boosting. IgG and IgA anti-CT were measured by ELISA. In three different sets of congenic strains, the level of IgG anti-CT clearly depended on the H-2 haplotype of the strain rather than on any background or Igh genes. Strains with the H-2b and H-2q haplotypes were high responders, and strains with the H-2k, H-2s and H-2d haplotypes were low responders. Within the H-2 complex, the IgG anti-CT response was mapped to the I-A subregion with the use of congenic intra-H-2I region recombinant strains. In contrast to these results with IgG anti-CT, plasma IgA anti-CT levels were uniformly low and indeterminate. We conclude that the murine IgG anti-CT response is controlled by a locus within the I-A subregion of H-2--a remarkable finding, considering the known abilities of this toxin to bind to and to directly stimulate lymphocytes.

UI MeSH Term Description Entries
D007070 Immunoglobulin A Represents 15-20% of the human serum immunoglobulins, mostly as the 4-chain polymer in humans or dimer in other mammals. Secretory IgA (IMMUNOGLOBULIN A, SECRETORY) is the main immunoglobulin in secretions. IgA,IgA Antibody,IgA1,IgA2,Antibody, IgA
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007117 Immunization, Secondary Any immunization following a primary immunization and involving exposure to the same or a closely related antigen. Immunization, Booster,Revaccination,Secondary Immunization,Booster Immunization,Booster Immunizations,Immunizations, Booster,Immunizations, Secondary,Revaccinations,Secondary Immunizations
D008805 Mice, Inbred A An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. Mouse, Inbred A,Inbred A Mice,Inbred A Mouse
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D004306 Dose-Response Relationship, Immunologic A specific immune response elicited by a specific dose of an immunologically active substance or cell in an organism, tissue, or cell. Immunologic Dose-Response Relationship,Relationship, Immunologic Dose-Response,Dose Response Relationship, Immunologic,Dose-Response Relationships, Immunologic,Immunologic Dose Response Relationship,Immunologic Dose-Response Relationships,Relationship, Immunologic Dose Response,Relationships, Immunologic Dose-Response
D005260 Female Females
D005802 Genes, MHC Class II Genetic loci in the vertebrate major histocompatibility complex that encode polymorphic products which control the immune response to specific antigens. The genes are found in the HLA-D region in humans and include H-2M, I-A, and I-E loci in mice. Class II Genes,Genes, Class II,Genes, HLA Class II,MHC Class II Genes,Class II Gene,Gene, Class II

Related Publications

C O Elson, and W Ealding
January 1976, Immunological communications,
C O Elson, and W Ealding
November 1987, Infection and immunity,
C O Elson, and W Ealding
April 1989, Science (New York, N.Y.),
C O Elson, and W Ealding
September 1986, European journal of immunology,
C O Elson, and W Ealding
February 1989, Transplantation proceedings,
C O Elson, and W Ealding
October 1980, Infection and immunity,
C O Elson, and W Ealding
December 1968, The Journal of infectious diseases,
C O Elson, and W Ealding
November 1992, Fundamental and applied toxicology : official journal of the Society of Toxicology,
Copied contents to your clipboard!