Effects of hydroxyeicosatetraenoic acids on fatty acid esterification in phospholipids and insulin secretion in pancreatic islets. 1985

S G Laychock

The ability of lipoxygenase products to become incorporated into islet cell phospholipids and to affect fatty acid mobilization was investigated. Isolated intact islets or homogenized islets were incubated with tritiated 5-hydroxyeicosatetraenoic acid (HETE), 12-HETE, 15-HETE, the leukotrienes C4 and D4, or prostaglandin E2. Tritiated 5-HETE and 12-HETE were largely esterified into phosphatidylcholine (PC) and phosphatidylethanolamine (PE) of intact islet membranes. Glucose stimulation increased [3H]5-HETE esterification to islet PC and PE. In islet homogenates, tritiated 5-HETE, 12-HETE, 15-HETE and arachidonic acid (AA) were also esterified into endogenous PC and PE, with less incorporation in phosphatidylinositol (PI) or phosphatidylserine. Addition of exogenous lysophospholipid acceptors potentiated the esterification of [3H]5-HETE to PC especially; [3H]AA was uniformly esterified to exogenous lysophospholipids. In addition, unlabeled 5-HETE (40 nM to 8 microM) affected the incorporation of [3H]AA into PC and PE of homogenates in a biphasic manner, whereas unlabeled AA inhibited [3H]AA incorporation into phospholipids in a concentration-dependent manner. Glucose (8.5 mM) stimulated the loss of labeled AA from prelabeled islet PC and PI. On the other hand, 5-HETE (40 nM) increased AA recovery in PC, PI, and PE of prelabeled islets, and HETE antagonized the glucose-stimulated release of AA from PC and PE. A 100-fold higher concentration of 5-HETE increased the glucose-stimulated loss of AA from phospholipids in prelabeled islets. Nanomolar concentrations of 5-HETE elicited a rapid and transient increase in insulin release, which was additive to the release response to a submaximal stimulatory concentration of glucose, whereas micromolar 5-HETE did not affect insulin release. Thus, pancreatic islets not only esterify HETE into phospholipids, but HETE also alters the turnover of AA in membrane phospholipids. HETE-induced changes in islet membrane fatty acid composition and/or AA mobilization may modulate stimulus-secretion coupling.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008084 Lipoxygenase An enzyme of the oxidoreductase class primarily found in PLANTS. It catalyzes reactions between linoleate and other fatty acids and oxygen to form hydroperoxy-fatty acid derivatives. Lipoxidase,Linoleate-Oxygen Oxidoreductase,Lipoxygenase-1,Lipoxygenase-2,Linoleate Oxygen Oxidoreductase,Lipoxygenase 1,Lipoxygenase 2,Oxidoreductase, Linoleate-Oxygen
D008297 Male Males
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose

Related Publications

S G Laychock
January 1994, The Journal of biological chemistry,
S G Laychock
January 1975, Naunyn-Schmiedeberg's archives of pharmacology,
S G Laychock
May 1985, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!