Effect of work-induced hypertrophy on muscle glucose metabolism in lean and obese mice. 1985

G Augert, and G Van de Werve, and Y Le Marchand-Brustel

The effect of work-induced hypertrophy (without any concomitant change in circulating parameters) on skeletal muscle metabolism was studied in lean mice and in gold-thioglucose-obese mice. Soleus muscle was functionally overloaded in one leg by tenotomy of gastrocnemius muscle 4 days before muscle isolation, muscle in the other leg being used as control. Basal deoxyglucose uptake and glycolysis were markedly increased in overloaded muscles compared with control muscles, together with a ten-fold increase in fructose 2-6 bisphosphate content. In the presence of maximally effective insulin concentrations, deoxyglucose uptake and glycolysis were identical in overloaded and control muscles of lean mice, while the effects of overload and insulin were partly additive in muscles of gold-thioglucose-obese mice. The sensitivity to insulin and insulin binding to muscles were not modified in overloaded muscles. Insulin-stimulated glycogenogenesis was decreased by about 50% probably due to a lower amount of glycogen synthase in overloaded than in control muscles. Thus, in muscles of gold-thioglucose-obese mice work-induced hypertrophy increased the response to maximal insulin concentrations without modifying the altered insulin sensitivity and decreased insulin binding.

UI MeSH Term Description Entries
D006984 Hypertrophy General increase in bulk of a part or organ due to CELL ENLARGEMENT and accumulation of FLUIDS AND SECRETIONS, not due to tumor formation, nor to an increase in the number of cells (HYPERPLASIA). Hypertrophies
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D005635 Fructosediphosphates Diphosphoric acid esters of fructose. The fructose-1,6- diphosphate isomer is most prevalent. It is an important intermediate in the glycolysis process.

Related Publications

G Augert, and G Van de Werve, and Y Le Marchand-Brustel
October 1965, Annals of the New York Academy of Sciences,
G Augert, and G Van de Werve, and Y Le Marchand-Brustel
January 1983, Annals of nutrition & metabolism,
G Augert, and G Van de Werve, and Y Le Marchand-Brustel
December 2006, Biochemical and biophysical research communications,
G Augert, and G Van de Werve, and Y Le Marchand-Brustel
December 1991, Journal of applied physiology (Bethesda, Md. : 1985),
G Augert, and G Van de Werve, and Y Le Marchand-Brustel
September 1999, The American journal of physiology,
G Augert, and G Van de Werve, and Y Le Marchand-Brustel
July 1983, Journal of animal science,
G Augert, and G Van de Werve, and Y Le Marchand-Brustel
February 2005, Obesity research,
G Augert, and G Van de Werve, and Y Le Marchand-Brustel
March 1983, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
G Augert, and G Van de Werve, and Y Le Marchand-Brustel
January 2013, Journal of pediatric endocrinology & metabolism : JPEM,
Copied contents to your clipboard!