Glutathione-independent isomerization of maleylpyruvate by Bacillus megaterium and other gram-positive bacteria. 1985

S R Hagedorn, and G Bradley, and P J Chapman

Maleylpyruvate, the ring fission product of gentisic acid, was found to be isomerized to fumarylpyruvate without a requirement for glutathione by an enzyme activity found in cell extracts of m-hydroxybenzoate-grown Bacillus megaterium 410. The isomerization reaction was detected as a shift in the absorbance maximum from 330 nm, the maximum for maleylpyruvate, to 345 nm, the maximum for fumarylpyruvate, when assayed at pH 8.0. Ammonium sulfate precipitation and dialysis of B. megaterium cell extracts resolved the isomerase activity from low-molecular-weight compounds such as glutathione but did not eliminate the isomerase activity. Iodoacetate and p-chloromercuribenzoate were potent inhibitors of the isomerase from B. megaterium. However, N-ethylmaleimide and iodoacetamide did not significantly inhibit this activity. In addition, fumaric acid was demonstrated as a product of gentisate oxidation by dialyzed cell extracts of B. megaterium. Glutathione-independent maleylpyruvate isomerases with properties similar to the isomerase found in B. megaterium were also found in other genera of gram-positive organisms. Eleven different organisms representing the genera Bacillus, Arthrobacter, Corynebacterium, Nocardia, and Rhodococcus were all found to possess this novel type of glutathione-independent maleylpyruvate isomerase.

UI MeSH Term Description Entries
D007535 Isomerases A class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. The reactions do not involve a net change in the concentrations of compounds other than the substrate and the product.(from Dorland, 28th ed) EC 5. Isomerase
D007700 Kinetics The rate dynamics in chemical or physical systems.
D005841 Gentisates Salts and esters of gentisic acid. 2,5-Dihydroxybenzoic Acids,2,5 Dihydroxybenzoic Acids,Acids, 2,5-Dihydroxybenzoic
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006090 Gram-Negative Bacteria Bacteria which lose crystal violet stain but are stained pink when treated by Gram's method. Gram Negative Bacteria
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D006867 Hydrolases Any member of the class of enzymes that catalyze the cleavage of the substrate and the addition of water to the resulting molecules, e.g., ESTERASES, glycosidases (GLYCOSIDE HYDROLASES), lipases, NUCLEOTIDASES, peptidases (PEPTIDE HYDROLASES), and phosphatases (PHOSPHORIC MONOESTER HYDROLASES). EC 3. Hydrolase
D001410 Bacillus megaterium A species of bacteria whose spores vary from round to elongate. It is a common soil saprophyte. Bacillus megatherium
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry

Related Publications

S R Hagedorn, and G Bradley, and P J Chapman
August 1985, Journal of bacteriology,
S R Hagedorn, and G Bradley, and P J Chapman
January 2009, Methods in molecular biology (Clifton, N.J.),
S R Hagedorn, and G Bradley, and P J Chapman
July 2016, ACS synthetic biology,
S R Hagedorn, and G Bradley, and P J Chapman
January 1970, Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Zweite naturwissenschaftliche Abt.: Allgemeine, landwirtschaftliche und technische Mikrobiologie,
S R Hagedorn, and G Bradley, and P J Chapman
March 2012, Biochimie,
S R Hagedorn, and G Bradley, and P J Chapman
February 2018, Bioelectrochemistry (Amsterdam, Netherlands),
S R Hagedorn, and G Bradley, and P J Chapman
May 2012, Langmuir : the ACS journal of surfaces and colloids,
S R Hagedorn, and G Bradley, and P J Chapman
July 1983, The Biochemical journal,
S R Hagedorn, and G Bradley, and P J Chapman
February 1999, Current opinion in microbiology,
Copied contents to your clipboard!