Purification and characterization of cytosolic liver protein facilitating heme transport into apocytochrome b5 from mitochondria. Evidence for identifying the heme transfer protein as belonging to a group of glutathione S-transferases. 1985

M Senjo, and T Ishibashi, and Y Imai

The results of the present experiment are shown in terms of the transport of protoheme from mitochondria to apocytochrome b5 when fresh rat liver mitochondria, apocytochrome b5, and cytosol were incubated. The heme transfer protein was purified from rat liver cytosol up to approximately 133-140-fold with a 43% yield by the procedure discussed herein, including Sephadex G-75 and CM-cellulose column chromatography. The final preparation showed apparent homogeneity upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Its native form was found to be a dimeric protein with a Mr = 45,000 which consists of a subunit with a Mr = 23,000. In the transporting system, the heme transfer depended on the concentration of mitochondria (donor), apocytochrome b5 (acceptor), and purified transfer protein, respectively. Omission of one of these components led to an almost complete loss of the transfer activity. The transport of mitochondrial protoheme was a rapid reaction which showed approximate linearity until 1.5 min and after that it became saturated. When the functional capacity was tested by the NADH-cytochrome c reductase system, the reconstituted cytochrome b5 expressed its complete original catalytic properties, as well as its characteristic absorption spectra for the hemoprotein. Furthermore, the detailed physicochemical and immunological characterization of the transfer protein provided evidence that the protein is identical with soluble glutathione S-transferase, which conjugates glutathione with a variety of electrophilic compounds. At least one of the glutathione S-transferase isozymes observed was identified as GST-C2, which comprises the subunit of Yb'Yb' by the immunoprecipitation reaction using various anti-glutathione S-transferase isozyme antibodies.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005779 Immunodiffusion Technique involving the diffusion of antigen or antibody through a semisolid medium, usually agar or agarose gel, with the result being a precipitin reaction. Gel Diffusion Tests,Diffusion Test, Gel,Diffusion Tests, Gel,Gel Diffusion Test,Immunodiffusions,Test, Gel Diffusion,Tests, Gel Diffusion
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione

Related Publications

M Senjo, and T Ishibashi, and Y Imai
September 1986, [Hokkaido igaku zasshi] The Hokkaido journal of medical science,
M Senjo, and T Ishibashi, and Y Imai
January 1990, Journal of biochemistry,
M Senjo, and T Ishibashi, and Y Imai
March 1984, Journal of biochemistry,
M Senjo, and T Ishibashi, and Y Imai
July 1983, Archives of biochemistry and biophysics,
M Senjo, and T Ishibashi, and Y Imai
September 1985, The Journal of biological chemistry,
M Senjo, and T Ishibashi, and Y Imai
July 1988, Archives of biochemistry and biophysics,
M Senjo, and T Ishibashi, and Y Imai
September 1991, Biochimica et biophysica acta,
M Senjo, and T Ishibashi, and Y Imai
September 1982, Experimental eye research,
Copied contents to your clipboard!