Positron emission tomography with ([11C]methyl)-L-methionine, [11C]D-glucose, and [68Ga]EDTA in supratentorial tumors. 1985

K Ericson, and A Lilja, and M Bergström, and V P Collins, and L Eriksson, and E Ehrin, and H von Holst, and H Lundqvist, and B Långsrom B, and M Mosskin

Sixteen patients with supratentorial tumors were examined with positron emission tomography (PET) using [( 11C]methyl)-L-methionine, [11C]D-glucose, and [68Ga]EDTA as well as CT. There were nine astrocytomas (grade II), three oligoastrocytomas (grade II), two anaplastic astrocytomas (grade III), and two meningiomas. Six patients with low-grade astrocytomas and all three patients with oligoastrocytomas had an accumulation of [11C]methionine varying from slightly to intensely increased as compared with normal brain tissue. There was a markedly increased uptake of methionine in the anaplastic astrocytomas. Three of the low-grade astrocytomas had a decreased uptake of [11C]methionine in at least part of the tumor as compared with normal brain tissue. Contrast enhancement on CT or uptake of [68Ga]EDTA was not a prerequisite for increased accumulation of methionine. Uptake of [11C]glucose was lower than or equal to that of normal brain tissue in the low-grade tumors and also in one of the two anaplastic astrocytomas and in the bulk of the other. In each individual case the methionine uptake tended to be higher--or less decreased--than the glucose uptake. In the low-grade tumors the uptake of methionine and that of glucose were often different, occasionally markedly different, as far as the tumoral-peritumoral areas involved. These differences were even more remarkable in the two anaplastic astrocytomas. An increased uptake of methionine was often seen in areas appearing normal on CT. It appears that PET with [11C]glucose has limitations with regard to delineation of the low-grade astrocytomas, whereas PET with [11C]methionine usually better reflects the extent of these tumors and, to a lesser degree, the extent of the high-grade neoplasms. The results of PET with [68Ga]EDTA were similar to those with postcontrast CT in most patients. The two meningiomas exhibited a high uptake of all tracers used for PET as well as a marked contrast enhancement on CT. The extent of the meningiomas judged by PET with the various tracers correlated well with the extent assessed by postcontrast CT.

UI MeSH Term Description Entries
D008297 Male Males
D008579 Meningioma A relatively common neoplasm of the CENTRAL NERVOUS SYSTEM that arises from arachnoidal cells. The majority are well differentiated vascular tumors which grow slowly and have a low potential to be invasive, although malignant subtypes occur. Meningiomas have a predilection to arise from the parasagittal region, cerebral convexity, sphenoidal ridge, olfactory groove, and SPINAL CANAL. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2056-7) Benign Meningioma,Malignant Meningioma,Meningiomas, Multiple,Meningiomatosis,Angioblastic Meningioma,Angiomatous Meningioma,Cerebral Convexity Meningioma,Clear Cell Meningioma,Fibrous Meningioma,Hemangioblastic Meningioma,Hemangiopericytic Meningioma,Intracranial Meningioma,Intraorbital Meningioma,Intraventricular Meningioma,Meningotheliomatous Meningioma,Microcystic Meningioma,Olfactory Groove Meningioma,Papillary Meningioma,Parasagittal Meningioma,Posterior Fossa Meningioma,Psammomatous Meningioma,Secretory Meningioma,Sphenoid Wing Meningioma,Spinal Meningioma,Transitional Meningioma,Xanthomatous Meningioma,Angioblastic Meningiomas,Angiomatous Meningiomas,Benign Meningiomas,Cerebral Convexity Meningiomas,Clear Cell Meningiomas,Convexity Meningioma, Cerebral,Convexity Meningiomas, Cerebral,Fibrous Meningiomas,Groove Meningiomas, Olfactory,Hemangioblastic Meningiomas,Hemangiopericytic Meningiomas,Intracranial Meningiomas,Intraorbital Meningiomas,Intraventricular Meningiomas,Malignant Meningiomas,Meningioma, Angioblastic,Meningioma, Angiomatous,Meningioma, Benign,Meningioma, Cerebral Convexity,Meningioma, Clear Cell,Meningioma, Fibrous,Meningioma, Hemangioblastic,Meningioma, Hemangiopericytic,Meningioma, Intracranial,Meningioma, Intraorbital,Meningioma, Intraventricular,Meningioma, Malignant,Meningioma, Meningotheliomatous,Meningioma, Microcystic,Meningioma, Multiple,Meningioma, Olfactory Groove,Meningioma, Papillary,Meningioma, Parasagittal,Meningioma, Posterior Fossa,Meningioma, Psammomatous,Meningioma, Secretory,Meningioma, Sphenoid Wing,Meningioma, Spinal,Meningioma, Transitional,Meningioma, Xanthomatous,Meningiomas,Meningiomas, Angioblastic,Meningiomas, Angiomatous,Meningiomas, Benign,Meningiomas, Cerebral Convexity,Meningiomas, Clear Cell,Meningiomas, Fibrous,Meningiomas, Hemangioblastic,Meningiomas, Hemangiopericytic,Meningiomas, Intracranial,Meningiomas, Intraorbital,Meningiomas, Intraventricular,Meningiomas, Malignant,Meningiomas, Meningotheliomatous,Meningiomas, Microcystic,Meningiomas, Olfactory Groove,Meningiomas, Papillary,Meningiomas, Parasagittal,Meningiomas, Posterior Fossa,Meningiomas, Psammomatous,Meningiomas, Secretory,Meningiomas, Sphenoid Wing,Meningiomas, Spinal,Meningiomas, Transitional,Meningiomas, Xanthomatous,Meningiomatoses,Meningotheliomatous Meningiomas,Microcystic Meningiomas,Multiple Meningioma,Multiple Meningiomas,Olfactory Groove Meningiomas,Papillary Meningiomas,Parasagittal Meningiomas,Posterior Fossa Meningiomas,Psammomatous Meningiomas,Secretory Meningiomas,Sphenoid Wing Meningiomas,Spinal Meningiomas,Transitional Meningiomas,Wing Meningioma, Sphenoid,Wing Meningiomas, Sphenoid,Xanthomatous Meningiomas
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011868 Radioisotopes Isotopes that exhibit radioactivity and undergo radioactive decay. (From Grant & Hackh's Chemical Dictionary, 5th ed & McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Daughter Isotope,Daughter Nuclide,Radioactive Isotope,Radioactive Isotopes,Radiogenic Isotope,Radioisotope,Radionuclide,Radionuclides,Daughter Nuclides,Daugter Isotopes,Radiogenic Isotopes,Isotope, Daughter,Isotope, Radioactive,Isotope, Radiogenic,Isotopes, Daugter,Isotopes, Radioactive,Isotopes, Radiogenic,Nuclide, Daughter,Nuclides, Daughter
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D005260 Female Females
D005708 Gallium A rare, metallic element designated by the symbol, Ga, atomic number 31, and atomic weight 69.72.

Related Publications

K Ericson, and A Lilja, and M Bergström, and V P Collins, and L Eriksson, and E Ehrin, and H von Holst, and H Lundqvist, and B Långsrom B, and M Mosskin
January 1985, AJNR. American journal of neuroradiology,
K Ericson, and A Lilja, and M Bergström, and V P Collins, and L Eriksson, and E Ehrin, and H von Holst, and H Lundqvist, and B Långsrom B, and M Mosskin
January 2019, Methods in molecular biology (Clifton, N.J.),
K Ericson, and A Lilja, and M Bergström, and V P Collins, and L Eriksson, and E Ehrin, and H von Holst, and H Lundqvist, and B Långsrom B, and M Mosskin
January 1987, Kokyu to junkan. Respiration & circulation,
K Ericson, and A Lilja, and M Bergström, and V P Collins, and L Eriksson, and E Ehrin, and H von Holst, and H Lundqvist, and B Långsrom B, and M Mosskin
February 2007, Annals of nuclear medicine,
K Ericson, and A Lilja, and M Bergström, and V P Collins, and L Eriksson, and E Ehrin, and H von Holst, and H Lundqvist, and B Långsrom B, and M Mosskin
March 1996, Proceedings of the National Academy of Sciences of the United States of America,
K Ericson, and A Lilja, and M Bergström, and V P Collins, and L Eriksson, and E Ehrin, and H von Holst, and H Lundqvist, and B Långsrom B, and M Mosskin
February 1996, AJNR. American journal of neuroradiology,
K Ericson, and A Lilja, and M Bergström, and V P Collins, and L Eriksson, and E Ehrin, and H von Holst, and H Lundqvist, and B Långsrom B, and M Mosskin
January 1987, Journal of computer assisted tomography,
K Ericson, and A Lilja, and M Bergström, and V P Collins, and L Eriksson, and E Ehrin, and H von Holst, and H Lundqvist, and B Långsrom B, and M Mosskin
October 1998, Proceedings of the National Academy of Sciences of the United States of America,
K Ericson, and A Lilja, and M Bergström, and V P Collins, and L Eriksson, and E Ehrin, and H von Holst, and H Lundqvist, and B Långsrom B, and M Mosskin
January 1984, Neuroradiology,
K Ericson, and A Lilja, and M Bergström, and V P Collins, and L Eriksson, and E Ehrin, and H von Holst, and H Lundqvist, and B Långsrom B, and M Mosskin
December 1994, Surgery,
Copied contents to your clipboard!