Preservation of arachidonoyl phospholipids during tissue processing for electron microscopic autoradiography. 1985

C M Krueger, and E J Neufeld, and J E Saffitz

To facilitate autoradiographic subcellular localization of arachidonoyl phospholipids, the retention of radioactivity during tissue processing of murine fibrosarcoma cells labeled in vitro with 3H-arachidonate was assessed. Approximately 94% of cell radioactivity was incorporated into phospholipids. During tissue processing, extraction of radioactivity was monitored by liquid scintillation spectrometry. Fixation of cells in glutaraldehyde-tannic acid, postfixation in osmium tetroxide, en bloc staining in uranyl magnesium acetate, dehydration in ethanol, and embedding in Epon resulted in preservation of 93.5% of total tissue radioactivity. Analysis of extracted radioactivity by thin layer chromatography revealed that no specific class of phospholipids was selectively extracted. Fixation with osmium tetroxide alone was nearly as effective as the complete fixation protocol and resulted in retention of 90.0% of radioactivity. However, fixation with glutaraldehyde-tannic acid alone without osmium tetroxide post-fixation led to extraction of 69.8% of total cell radioactivity. Thus, osmium tetroxide is crucial in the preservation of arachidonoyl phospholipids and presumably forms extensive cross-links between polyunsaturated acyl residues. This degree of preservation of arachidonoyl phospholipids is indicative of spatial fixation of the radiolabeled moieties and will permit quantitative studies of subcellular loci of eicosanoid metabolism by electron microscopic autoradiography.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009993 Osmium Tetroxide (T-4)-Osmium oxide (OsO4). A highly toxic and volatile oxide of osmium used in industry as an oxidizing agent. It is also used as a histological fixative and stain and as a synovectomy agent in arthritic joints. Its vapor can cause eye, skin, and lung damage. Osmic Acid,Acid, Osmic,Tetroxide, Osmium
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D005976 Glutaral One of the protein CROSS-LINKING REAGENTS that is used as a disinfectant for sterilization of heat-sensitive equipment and as a laboratory reagent, especially as a fixative. Glutaraldehyde,Cidex,Diswart,Gludesin,Glutardialdehyde,Glutarol,Korsolex,Novaruca,Sekumatic,Sonacide,Sporicidin
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D013048 Specimen Handling Procedures for collecting, preserving, and transporting of specimens sufficiently stable to provide accurate and precise results suitable for clinical interpretation. Specimen Collection,Collection, Specimen,Collections, Specimen,Handling, Specimen,Handlings, Specimen,Specimen Collections,Specimen Handlings

Related Publications

C M Krueger, and E J Neufeld, and J E Saffitz
January 1974, Cell and tissue research,
C M Krueger, and E J Neufeld, and J E Saffitz
January 1972, Mikroskopie,
C M Krueger, and E J Neufeld, and J E Saffitz
November 1978, Biulleten' eksperimental'noi biologii i meditsiny,
C M Krueger, and E J Neufeld, and J E Saffitz
February 1978, The Bulletin of Tokyo Dental College,
C M Krueger, and E J Neufeld, and J E Saffitz
April 1974, Arkhiv anatomii, gistologii i embriologii,
C M Krueger, and E J Neufeld, and J E Saffitz
January 1981, Gegenbaurs morphologisches Jahrbuch,
C M Krueger, and E J Neufeld, and J E Saffitz
January 1966, Gegenbaurs morphologisches Jahrbuch,
C M Krueger, and E J Neufeld, and J E Saffitz
September 1981, Nihon rinsho. Japanese journal of clinical medicine,
C M Krueger, and E J Neufeld, and J E Saffitz
September 1988, Scanning microscopy,
C M Krueger, and E J Neufeld, and J E Saffitz
February 1977, Toxicology and applied pharmacology,
Copied contents to your clipboard!