Cardiorespiratory dynamics in men in response to passive work. 1985

Y Nakazono, and Y Miyamoto

Dynamic characteristics of ventilation, cardiac output, and gas exchange in response to passive limb movements were studied in four healthy men in an upright position. Passive exercise was performed on a motor-driven bicycle ergometer, of which pedaling rate was varied from control (30 rpm) to stimulus (90 rpm) level in a stepwise fashion. Stroke volume (SV), heart rate (HR), and cardiac output (Q) were determined continuously during the exercise by using an automated impedance cardiograph. Minute ventilation (VE), respiratory frequency (f), tidal volume (VT), oxygen consumption (VO2), carbon dioxide output (VCO2), end-tidal pressure of oxygen and carbon dioxide (PETO2 and PETCO2), and the gas exchange ratio (R) were also determined at each breath. When the pedaling rate was increased, Q and VE rose in excess of metabolic need with a half response time of about 10 sec, and remained elevated for the duration of the stimulus. VO2 and VCO2 rose transiently, then recovered to the initial control level after a few min. PETCO2 remained at the control level for about one min, then decreased by 1 Torr. PETO2 and R rose transiently. These results suggest that hyperpnea during passive exercise is not induced by chemical stimuli to known chemoreceptors, but is due to reflexes mediated either by moving limbs or the right heart.

UI MeSH Term Description Entries
D006985 Hyperventilation A pulmonary ventilation rate faster than is metabolically necessary for the exchange of gases. It is the result of an increased frequency of breathing, an increased tidal volume, or a combination of both. It causes an excess intake of oxygen and the blowing off of carbon dioxide. Hyperventilations
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D012143 Respiratory Physiological Phenomena Physiological processes and properties of the RESPIRATORY SYSTEM as a whole or of any of its parts. Respiratory Physiologic Processes,Respiratory Physiological Processes,Respiratory Physiology,Physiology, Respiratory,Pulmonary Physiological Phenomena,Pulmonary Physiological Phenomenon,Pulmonary Physiological Process,Pulmonary Physiological Processes,Respiratory Physiological Concepts,Respiratory Physiological Phenomenon,Respiratory Physiological Process,Concept, Respiratory Physiological,Concepts, Respiratory Physiological,Phenomena, Pulmonary Physiological,Phenomena, Respiratory Physiological,Phenomenas, Pulmonary Physiological,Phenomenas, Respiratory Physiological,Phenomenon, Pulmonary Physiological,Phenomenon, Respiratory Physiological,Phenomenons, Pulmonary Physiological,Phenomenons, Respiratory Physiological,Physiologic Processes, Respiratory,Physiological Concept, Respiratory,Physiological Concepts, Respiratory,Physiological Phenomena, Pulmonary,Physiological Phenomena, Respiratory,Physiological Phenomenas, Pulmonary,Physiological Phenomenas, Respiratory,Physiological Phenomenon, Pulmonary,Physiological Phenomenon, Respiratory,Physiological Phenomenons, Pulmonary,Physiological Phenomenons, Respiratory,Physiological Process, Pulmonary,Physiological Process, Respiratory,Physiological Processes, Pulmonary,Physiological Processes, Respiratory,Process, Pulmonary Physiological,Process, Respiratory Physiological,Processes, Pulmonary Physiological,Pulmonary Physiological Phenomenas,Pulmonary Physiological Phenomenons,Respiratory Physiological Concept,Respiratory Physiological Phenomenas,Respiratory Physiological Phenomenons
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D002307 Cardiography, Impedance A type of impedance plethysmography in which bioelectrical impedance is measured between electrodes positioned around the neck and around the lower thorax. It is used principally to calculate stroke volume and cardiac volume, but it is also related to myocardial contractility, thoracic fluid content, and circulation to the extremities. Impedance, Transthoracic,Plethysmography, Impedance, Transthoracic,Impedance Cardiography,Impedance Plethysmography, Transthoracic,Plethysmography, Transthoracic Impedance,Transthoracic Impedance Plethysmography,Cardiographies, Impedance,Impedance Cardiographies,Impedance Plethysmographies, Transthoracic,Impedances, Transthoracic,Plethysmographies, Transthoracic Impedance,Transthoracic Impedance,Transthoracic Impedance Plethysmographies,Transthoracic Impedances
D002320 Cardiovascular Physiological Phenomena Processes and properties of the CARDIOVASCULAR SYSTEM as a whole or of any of its parts. Cardiovascular Physiologic Processes,Cardiovascular Physiological Processes,Cardiovascular Physiology,Cardiovascular Physiological Concepts,Cardiovascular Physiological Phenomenon,Cardiovascular Physiological Process,Physiology, Cardiovascular,Cardiovascular Physiological Concept,Cardiovascular Physiological Phenomenas,Concept, Cardiovascular Physiological,Concepts, Cardiovascular Physiological,Phenomena, Cardiovascular Physiological,Phenomenon, Cardiovascular Physiological,Physiologic Processes, Cardiovascular,Physiological Concept, Cardiovascular,Physiological Concepts, Cardiovascular,Physiological Phenomena, Cardiovascular,Physiological Phenomenon, Cardiovascular,Physiological Process, Cardiovascular,Physiological Processes, Cardiovascular,Process, Cardiovascular Physiological,Processes, Cardiovascular Physiologic,Processes, Cardiovascular Physiological
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions

Related Publications

Y Nakazono, and Y Miyamoto
January 2016, Advances in experimental medicine and biology,
Y Nakazono, and Y Miyamoto
January 2016, Advances in experimental medicine and biology,
Y Nakazono, and Y Miyamoto
November 1983, Journal of applied physiology: respiratory, environmental and exercise physiology,
Y Nakazono, and Y Miyamoto
May 1982, Journal of applied physiology: respiratory, environmental and exercise physiology,
Y Nakazono, and Y Miyamoto
January 1993, Journal of applied physiology (Bethesda, Md. : 1985),
Y Nakazono, and Y Miyamoto
January 1985, European journal of applied physiology and occupational physiology,
Y Nakazono, and Y Miyamoto
November 1988, Canadian journal of physiology and pharmacology,
Y Nakazono, and Y Miyamoto
January 1993, European journal of applied physiology and occupational physiology,
Y Nakazono, and Y Miyamoto
February 1977, Journal of applied physiology: respiratory, environmental and exercise physiology,
Copied contents to your clipboard!