Tyrosine phosphorylation within the amino-terminal domain of pp60c-src molecules associated with polyoma virus middle-sized tumor antigen. 1985

W Yonemoto, and M Jarvis-Morar, and J S Brugge, and J B Bolen, and M A Israel

We have examined the in vitro phosphorylation of cellular src protein (pp60c-src) molecules associated with the polyoma virus middle-sized tumor antigen in polyoma virus-transformed cells. These pp60c-src molecules possessed an enhanced tyrosyl kinase activity, migrated aberrantly on NaDodSO4/polyacrylamide gels, and contained a novel site of tyrosine phosphorylation within the amino-terminal region of the molecule. The pp60c-src molecules not associated with the middle-sized tumor antigen were phosphorylated exclusively on a tyrosine residue within the carboxyl-terminal domain of pp60c-src. A similar modified form of the middle-sized tumor antigen-associated pp60c-src protein was detected in lysates from polyoma virus-transformed cells labeled in vivo with [32P]orthophosphate in the presence of sodium orthovanadate, an inhibitor of phosphotyrosyl phosphatases.

UI MeSH Term Description Entries
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000952 Antigens, Polyomavirus Transforming Polyomavirus antigens which cause infection and cellular transformation. The large T antigen is necessary for the initiation of viral DNA synthesis, repression of transcription of the early region and is responsible in conjunction with the middle T antigen for the transformation of primary cells. Small T antigen is necessary for the completion of the productive infection cycle. Polyomavirus Large T Antigens,Polyomavirus Middle T Antigens,Polyomavirus Small T Antigens,Polyomavirus T Proteins,Polyomavirus Transforming Antigens,Polyomavirus Tumor Antigens,SV40 T Antigens,SV40 T Proteins,Simian Sarcoma Virus Proteins,Polyomaviruses Large T Proteins,Polyomaviruses Middle T Proteins,Polyomaviruses Small T Proteins,Antigens, Polyomavirus Tumor,Antigens, SV40 T,Proteins, Polyomavirus T,Proteins, SV40 T,T Antigens, SV40,T Proteins, Polyomavirus,T Proteins, SV40,Transforming Antigens, Polyomavirus,Tumor Antigens, Polyomavirus
D000957 Antigens, Viral, Tumor Those proteins recognized by antibodies from serum of animals bearing tumors induced by viruses; these proteins are presumably coded for by the nucleic acids of the same viruses that caused the neoplastic transformation. Antigens, Neoplasm, Viral,Neoplasm Antigens, Viral,T Antigens,Tumor Antigens, Viral,Viral Tumor Antigens,Virus Transforming Antigens,Large T Antigen,Large T-Antigen,Small T Antigen,Small T-Antigen,T Antigen,T-Antigen,Viral T Antigens,Antigen, Large T,Antigen, Small T,Antigen, T,Antigens, T,Antigens, Viral Neoplasm,Antigens, Viral T,Antigens, Viral Tumor,Antigens, Virus Transforming,T Antigen, Large,T Antigen, Small,T Antigens, Viral,T-Antigen, Large,T-Antigen, Small,Transforming Antigens, Virus,Viral Neoplasm Antigens

Related Publications

W Yonemoto, and M Jarvis-Morar, and J S Brugge, and J B Bolen, and M A Israel
May 1986, Molecular and cellular biology,
W Yonemoto, and M Jarvis-Morar, and J S Brugge, and J B Bolen, and M A Israel
March 1984, The EMBO journal,
W Yonemoto, and M Jarvis-Morar, and J S Brugge, and J B Bolen, and M A Israel
January 1985, Journal of cellular biochemistry,
W Yonemoto, and M Jarvis-Morar, and J S Brugge, and J B Bolen, and M A Israel
January 1989, Oncogene research,
W Yonemoto, and M Jarvis-Morar, and J S Brugge, and J B Bolen, and M A Israel
October 1985, Molecular and cellular biology,
W Yonemoto, and M Jarvis-Morar, and J S Brugge, and J B Bolen, and M A Israel
November 1985, Proceedings of the National Academy of Sciences of the United States of America,
W Yonemoto, and M Jarvis-Morar, and J S Brugge, and J B Bolen, and M A Israel
March 1992, The Journal of biological chemistry,
W Yonemoto, and M Jarvis-Morar, and J S Brugge, and J B Bolen, and M A Israel
February 1986, Proceedings of the National Academy of Sciences of the United States of America,
W Yonemoto, and M Jarvis-Morar, and J S Brugge, and J B Bolen, and M A Israel
January 1985, Journal of virology,
W Yonemoto, and M Jarvis-Morar, and J S Brugge, and J B Bolen, and M A Israel
March 1992, Oncogene,
Copied contents to your clipboard!