Polyamines in photosynthetic eubacteria and extreme-halophilic archaebacteria. 1985

K Hamana, and M Kamekura, and H Onishi, and T Akazawa, and S Matsuzaki

Qualitative and quantitative determinations of polyamines have been done in 4 photosynthetic eubacteria and 6 extreme-halophilic archaebacteria. For comparison, 5 moderate-halophilic eubacteria were also analyzed to determine their polyamine contents. Not only putrescine and spermidine but also homospermidine were found in the photosynthetic eubacteria, especially in the N2-fixing species, Rhodospirillum and Chromatium. Norspermidine, norspermine, and spermine were not detected in the phototrophic eubacteria. No appreciable amount of any polyamine was found in extreme-halophilic archaebacteria, Halobacterium and Halococcus, while moderate-halophilic eubacteria contained quite high concentrations of putrescine and spermidine and cadaverine. When arginine was incubated with cell lysates of these two archaebacteria, appreciable amounts of agmatine were produced; neither putrescine nor cadaverine was formed in the presence of ornithine or lysine. No detectable amount of spermidine was produced by the lysates on incubation with putrescine.

UI MeSH Term Description Entries
D008837 Micrococcus A genus of gram-positive, spherical bacteria found in soils and fresh water, and frequently on the skin of man and other animals.
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D002844 Chromatium A genus of gram-negative, ovoid to rod-shaped bacteria that is phototrophic. All species use ammonia as a nitrogen source. Some strains are found only in sulfide-containing freshwater habitats exposed to light while others may occur in marine, estuarine, and freshwater environments.
D005051 Eubacterium A genus of gram-positive, rod-shaped bacteria found in cavities of man and animals, animal and plant products, infections of soft tissue, and soil. Some species may be pathogenic. No endospores are produced. The genus Eubacterium should not be confused with EUBACTERIA, one of the three domains of life. Butyribacterium
D006216 Halobacteriaceae A family of extremely halophilic archaea found in environments with high salt concentrations, such as salt lakes, evaporated brines, or salted fish. Halobacteriaceae are either obligate aerobes or facultative anaerobes and are divided into at least twenty-six genera including: HALOARCULA; HALOBACTERIUM; HALOCOCCUS; HALOFERAX; HALORUBRUM; NATRONOBACTERIUM; and NATRONOCOCCUS.
D006217 Halobacterium A genus of HALOBACTERIACEAE whose growth requires a high concentration of salt. Binary fission is by constriction.
D001105 Archaea One of the three domains of life (the others being BACTERIA and Eukarya), formerly called Archaebacteria under the taxon Bacteria, but now considered separate and distinct. They are characterized by: (1) the presence of characteristic tRNAs and ribosomal RNAs; (2) the absence of peptidoglycan cell walls; (3) the presence of ether-linked lipids built from branched-chain subunits; and (4) their occurrence in unusual habitats. While archaea resemble bacteria in morphology and genomic organization, they resemble eukarya in their method of genomic replication. The domain contains at least four kingdoms: CRENARCHAEOTA; EURYARCHAEOTA; NANOARCHAEOTA; and KORARCHAEOTA. Archaebacteria,Archaeobacteria,Archaeon,Archebacteria
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D012242 Rhodobacter sphaeroides Spherical phototrophic bacteria found in mud and stagnant water exposed to light. Rhodopseudomonas sphaeroides,Rhodobacter spheroides,Rhodopseudomonas spheroides

Related Publications

K Hamana, and M Kamekura, and H Onishi, and T Akazawa, and S Matsuzaki
January 1987, Mikrobiologiia,
K Hamana, and M Kamekura, and H Onishi, and T Akazawa, and S Matsuzaki
June 1983, Cell,
K Hamana, and M Kamekura, and H Onishi, and T Akazawa, and S Matsuzaki
March 1984, The Biochemical journal,
K Hamana, and M Kamekura, and H Onishi, and T Akazawa, and S Matsuzaki
January 1989, Canadian journal of microbiology,
K Hamana, and M Kamekura, and H Onishi, and T Akazawa, and S Matsuzaki
January 1985, Annual review of biochemistry,
K Hamana, and M Kamekura, and H Onishi, and T Akazawa, and S Matsuzaki
November 1994, Journal of molecular evolution,
K Hamana, and M Kamekura, and H Onishi, and T Akazawa, and S Matsuzaki
January 1985, Journal of general microbiology,
K Hamana, and M Kamekura, and H Onishi, and T Akazawa, and S Matsuzaki
January 1993, Molekuliarnaia biologiia,
K Hamana, and M Kamekura, and H Onishi, and T Akazawa, and S Matsuzaki
January 1995, Mikrobiologiia,
K Hamana, and M Kamekura, and H Onishi, and T Akazawa, and S Matsuzaki
June 2003, Wei sheng wu xue bao = Acta microbiologica Sinica,
Copied contents to your clipboard!