Enzymes converting procollagens to collagens. 1985

L Peltonen, and R Halila, and L Ryhänen

Conversion from procollagen to collagen is a specific process that is a requirement for proper alignment of collagen molecules to form functional fibers. This process is catalyzed by at least three structurally and functionally distinct enzymes cleaving collagen types I-III. The cleavage processes possibly taking place in the more recently discovered collagen types are not known to any extent at this time. Two amino-terminal proteinases, one cleaving type I and type II procollagens and the other cleaving type III procollagen, have been purified close to homogeneity, and the more unspecific activity of carboxy-terminal proteinase has been isolated from several tissues. In our experimental model, however, cleavage of the carboxy-terminal propeptides of types I and III procollagen is differently affected by lysine. This suggests the presence of at least two distinct enzymes for the removal of carboxyl-terminal propeptides. The regulation of the reaction process from procollagen to collagen is not well known at present. The importance of the phenomenon in terms of fibril formation, however, is demonstrated by several elegant studies in vitro; and certain genetic disorders in which this process is defective demonstrate the significance in vivo. Moreover, the factors shown to effect the cleavage process may be potentially beneficial in the treatment of the pathological processes with abnormal collagen accumulation such as fibrosis. In this paper we briefly review the current knowledge of the converting enzymes, including some very recent findings of our laboratory as well as the evidence presented for the biological significance of the conversion process.

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008666 Metalloendopeptidases ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism. Metallo-Endoproteinases,Metalloendopeptidase
D010013 Osteogenesis Imperfecta COLLAGEN DISEASES characterized by brittle, osteoporotic, and easily fractured bones. It may also present with blue sclerae, loose joints, and imperfect dentin formation. Most types are autosomal dominant and are associated with mutations in COLLAGEN TYPE I. Fragilitas Ossium,Lobstein Disease,Brittle Bone Disease,Lobstein's Disease,Osteogenesis Imperfecta Tarda,Osteogenesis Imperfecta with Blue Sclerae,Osteogenesis Imperfecta, Type 1,Osteogenesis Imperfecta, Type I,Disease, Lobstein,Disease, Lobstein's,Lobsteins Disease,Ossiums, Fragilitas,Osteogenesis Imperfecta Tardas
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D011347 Procollagen A biosynthetic precursor of collagen containing additional amino acid sequences at the amino-terminal and carboxyl-terminal ends of the polypeptide chains. Protocollagen,Procollagen Type M
D011348 Procollagen N-Endopeptidase An extracellular endopeptidase which excises a block of peptides at the amino terminal, nonhelical region of the procollagen molecule with the formation of collagen. Absence or deficiency of the enzyme causes accumulation of procollagen which results in the inherited connective tissue disorder--dermatosparaxis. EC 3.4.24.14. Procollagen Peptidase,Procollagen N-Proteinase,Procollagen N Endopeptidase,Procollagen N Proteinase
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick

Related Publications

L Peltonen, and R Halila, and L Ryhänen
January 1982, Methods in enzymology,
L Peltonen, and R Halila, and L Ryhänen
January 1976, International review of connective tissue research,
L Peltonen, and R Halila, and L Ryhänen
January 1987, Methods in enzymology,
L Peltonen, and R Halila, and L Ryhänen
September 1979, Analytical biochemistry,
L Peltonen, and R Halila, and L Ryhänen
January 1977, Journal of immunological methods,
L Peltonen, and R Halila, and L Ryhänen
December 1982, Investigative ophthalmology & visual science,
L Peltonen, and R Halila, and L Ryhänen
June 1958, Science (New York, N.Y.),
L Peltonen, and R Halila, and L Ryhänen
May 1996, Proceedings of the National Academy of Sciences of the United States of America,
L Peltonen, and R Halila, and L Ryhänen
June 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
L Peltonen, and R Halila, and L Ryhänen
April 1998, Current opinion in lipidology,
Copied contents to your clipboard!