Hereditary tyrosinemia. Formation of succinylacetone-amino acid adducts. 1985

S Manabe, and S Sassa, and A Kappas

Succinylacetone (SA) (4,6-dioxoheptanoic acid) is an abnormal metabolite produced in patients with hereditary tyrosinemia as a consequence of an inherited deficiency of fumaryl acetoacetate hydrolase activity. Patients with this disease are associated with a number of abnormalities, including aminoaciduria, proteinuria, liver failure, commonly hepatoma, and decreased GSH concentration in the liver. In the course of our studies of tyrosinemia, we found that the urine of patients with this disorder contains material(s) that absorbs light at 315 nm. We investigated the nature of the 315 nm material in detail. SA was found to react with amino acids and protein nonenzymatically, to form stable adducts at physiological temperature and pH. All SA adducts with amino acids and/or proteins exhibited an absorption peak at 315 nm. Although all amino acids reacted with SA, the most reactive amino acid was lysine (Lys), followed, in order, by glycine, methionine, phenylalanine, serine, alanine, and glutamine. SA-adducts were unstable at pH below 6, while they were made considerably more stable after reduction with NaBH4, suggesting that SA forms an adduct via Schiff base formation. High-performance liquid chromatography (HPLC) analysis of urines from patients with tyrosinemia revealed the existence of SA-glycine, SA-methionine, SA-tyrosine, and SA-phenylalanine. After digestion of urines with proteinase K, three more HPLC peaks appeared, which all corresponded to SA-Lys adducts. TLC analysis of SA-Lys showed that SA-Lys could form as many as seven different adducts. No SA-adduct peaks were observed in HPLC in urines from normal subjects, patients with other forms of aminoaciduria, or patients with the nephrotic syndrome. In addition to amino acids and proteins, SA reacted with reduced glutathione (GSH) and formed a stable adduct. These findings suggest that SA adduct formation with amino acids, GSH, and proteins is a significant process occurring in tyrosinemia, and may account for certain of the pathologic findings in this hereditary disorder.

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006537 Heptanoates Salts and esters of the 7-carbon saturated monocarboxylic acid heptanoic acid. Enanthates
D006538 Heptanoic Acids 7-carbon saturated monocarboxylic acids. Acids, Heptanoic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D006867 Hydrolases Any member of the class of enzymes that catalyze the cleavage of the substrate and the addition of water to the resulting molecules, e.g., ESTERASES, glycosidases (GLYCOSIDE HYDROLASES), lipases, NUCLEOTIDASES, peptidases (PEPTIDE HYDROLASES), and phosphatases (PHOSPHORIC MONOESTER HYDROLASES). EC 3. Hydrolase
D000592 Amino Acid Metabolism, Inborn Errors Disorders affecting amino acid metabolism. The majority of these disorders are inherited and present in the neonatal period with metabolic disturbances (e.g., ACIDOSIS) and neurologic manifestations. They are present at birth, although they may not become symptomatic until later in life. Amino Acidopathies, Congenital,Amino Acid Metabolism Disorders, Inborn,Amino Acid Metabolism, Inborn Error,Amino Acid Metabolism, Inherited Disorders,Amino Acidopathies, Inborn,Congenital Amino Acidopathies,Inborn Errors, Amino Acid Metabolism,Inherited Errors of Amino Acid Metabolism,Amino Acidopathy, Congenital,Amino Acidopathy, Inborn,Congenital Amino Acidopathy,Inborn Amino Acidopathies,Inborn Amino Acidopathy

Related Publications

S Manabe, and S Sassa, and A Kappas
November 1981, Clinica chimica acta; international journal of clinical chemistry,
S Manabe, and S Sassa, and A Kappas
January 2023, Pediatrics international : official journal of the Japan Pediatric Society,
S Manabe, and S Sassa, and A Kappas
January 1981, Acta paediatrica Scandinavica,
S Manabe, and S Sassa, and A Kappas
December 1991, Biochimica et biophysica acta,
S Manabe, and S Sassa, and A Kappas
May 1983, The New England journal of medicine,
S Manabe, and S Sassa, and A Kappas
August 1982, Clinica chimica acta; international journal of clinical chemistry,
S Manabe, and S Sassa, and A Kappas
May 2010, European journal of pediatrics,
Copied contents to your clipboard!