Epilepsia partialis continua: active cortical spike discharges and high cerebral blood flow in the motor cortex and enhanced transcortical long loop reflex. 1985

Y Kuroiwa, and H Tohgi, and A Takahashi, and H Kanaya

We report a patient suffering from persistent myoclonic jerks in the right forearm without any definite EEG abnormality under routine recording conditions. By computer summation, using the jerk-locked averaging technique, a sharp spike was recognized as a precisely time-locked event in relation to myoclonic twitches. A cranial CT scan revealed a small cortical lesion, which was found very close to the sensorimotor cortex of the right arm. Cerebral blood flow study using the xenon inhalation method revealed a discrete focus of high flow, which corresponded well with the CT lesion. On electrical stimulation of the right median nerve, a large somatosensory evoked potential and an enhanced transcortical long loop reflex were observed. Electrocorticogram showed active focal spike discharges localized at the left precentral gyrus. We postulate that an epileptogenic focus in the motor cortex and an enhanced transcortical long loop reflex appear to be important for the occurrence of epilepsia partialis continua in this patient.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D004828 Epilepsies, Partial Conditions characterized by recurrent paroxysmal neuronal discharges which arise from a focal region of the brain. Partial seizures are divided into simple and complex, depending on whether consciousness is unaltered (simple partial seizure) or disturbed (complex partial seizure). Both types may feature a wide variety of motor, sensory, and autonomic symptoms. Partial seizures may be classified by associated clinical features or anatomic location of the seizure focus. A secondary generalized seizure refers to a partial seizure that spreads to involve the brain diffusely. (From Adams et al., Principles of Neurology, 6th ed, pp317) Abdominal Epilepsy,Digestive Epilepsy,Epilepsy, Focal,Epilepsy, Simple Partial,Focal Seizure Disorder,Gelastic Epilepsy,Partial Epilepsy,Partial Seizure Disorder,Seizure Disorder, Partial,Simple Partial Seizures,Amygdalo-Hippocampal Epilepsy,Benign Focal Epilepsy, Childhood,Benign Occipital Epilepsy,Benign Occipital Epilepsy, Childhood,Childhood Benign Focal Epilepsy,Childhood Benign Occipital Epilepsy,Epilepsy, Benign Occipital,Epilepsy, Localization-Related,Epilepsy, Partial,Occipital Lobe Epilepsy,Panayiotopoulos Syndrome,Partial Seizures, Simple, Consciousness Preserved,Rhinencephalic Epilepsy,Seizure Disorder, Focal,Subclinical Seizure,Uncinate Seizures,Abdominal Epilepsies,Amygdalo-Hippocampal Epilepsies,Benign Occipital Epilepsies,Digestive Epilepsies,Disorders, Focal Seizure,Disorders, Partial Seizure,Epilepsies, Abdominal,Epilepsies, Amygdalo-Hippocampal,Epilepsies, Benign Occipital,Epilepsies, Digestive,Epilepsies, Focal,Epilepsies, Gelastic,Epilepsies, Localization-Related,Epilepsies, Occipital Lobe,Epilepsies, Rhinencephalic,Epilepsies, Simple Partial,Epilepsy, Abdominal,Focal Epilepsies,Focal Epilepsy,Focal Seizure Disorders,Gelastic Epilepsies,Lobe Epilepsy, Occipital,Localization-Related Epilepsies,Localization-Related Epilepsy,Occipital Epilepsies, Benign,Occipital Epilepsy, Benign,Occipital Lobe Epilepsies,Partial Epilepsies,Partial Epilepsies, Simple,Partial Seizure Disorders,Partial Seizures, Simple,Rhinencephalic Epilepsies,Seizure Disorders, Focal,Seizure Disorders, Partial,Seizure, Subclinical,Seizure, Uncinate,Seizures, Simple Partial,Seizures, Subclinical,Seizures, Uncinate,Simple Partial Epilepsies,Subclinical Seizures,Uncinate Seizure
D004831 Epilepsies, Myoclonic A clinically diverse group of epilepsy syndromes characterized either by myoclonic seizures or by myoclonus in association with other seizure types. Myoclonic epilepsy syndromes are divided into three subtypes based on etiology: familial, cryptogenic, and symptomatic. Idiopathic Myoclonic Epilepsy,Myoclonic Absence Epilepsy,Myoclonic Encephalopathy,Myoclonic Epilepsy,Symptomatic Myoclonic Epilepsy,Benign Infantile Myoclonic Epilepsy,Cryptogenic Myoclonic Epilepsy,Doose Syndrome,Dravet Syndrome,Early Childhood Epilepsy, Myoclonic,Early Childhood, Myoclonic Epilepsy,Encephalopathy, Myoclonic,Epilepsy, Early Childhood, Myoclonic,Epilepsy, Myoclonic, Early Childhood,Epilepsy, Myoclonic, Infantile,Epilepsy, Myoclonic, Infantile, Benign,Epilepsy, Myoclonic, Infantile, Severe,Epilepsy, Myoclonus,Infantile Severe Myoclonic Epilepsy,Myoclonic Astatic Epilepsy,Myoclonic Epilepsy, Benign Infantile,Myoclonic Epilepsy, Early Childhood,Myoclonic Epilepsy, Infantile,Myoclonic Epilepsy, Infantile, Benign,Myoclonic Epilepsy, Infantile, Severe,Myoclonic Epilepsy, Severe Infantile,Myoclonic Epilepsy, Severe, Of Infancy,Myoclonic Seizure Disorder,Severe Infantile Myoclonic Epilepsy,Severe Myoclonic Epilepsy Of Infancy,Severe Myoclonic Epilepsy, Infantile,Astatic Epilepsies, Myoclonic,Astatic Epilepsy, Myoclonic,Cryptogenic Myoclonic Epilepsies,Dravet Syndromes,Encephalopathies, Myoclonic,Epilepsies, Cryptogenic Myoclonic,Epilepsies, Idiopathic Myoclonic,Epilepsies, Infantile Myoclonic,Epilepsies, Myoclonic Absence,Epilepsies, Myoclonic Astatic,Epilepsies, Symptomatic Myoclonic,Epilepsy, Cryptogenic Myoclonic,Epilepsy, Idiopathic Myoclonic,Epilepsy, Infantile Myoclonic,Epilepsy, Myoclonic,Epilepsy, Myoclonic Absence,Epilepsy, Myoclonic Astatic,Epilepsy, Symptomatic Myoclonic,Idiopathic Myoclonic Epilepsies,Infantile Myoclonic Epilepsies,Infantile Myoclonic Epilepsy,Myoclonic Absence Epilepsies,Myoclonic Astatic Epilepsies,Myoclonic Encephalopathies,Myoclonic Epilepsies,Myoclonic Epilepsies, Cryptogenic,Myoclonic Epilepsies, Idiopathic,Myoclonic Epilepsies, Infantile,Myoclonic Epilepsies, Symptomatic,Myoclonic Epilepsy, Cryptogenic,Myoclonic Epilepsy, Idiopathic,Myoclonic Epilepsy, Symptomatic,Myoclonic Seizure Disorders,Myoclonus Epilepsies,Myoclonus Epilepsy,Seizure Disorder, Myoclonic,Seizure Disorders, Myoclonic,Symptomatic Myoclonic Epilepsies
D005073 Evoked Potentials, Somatosensory The electric response evoked in the CEREBRAL CORTEX by stimulation along AFFERENT PATHWAYS from PERIPHERAL NERVES to CEREBRUM. Somatosensory Evoked Potentials,Evoked Potential, Somatosensory,Somatosensory Evoked Potential

Related Publications

Y Kuroiwa, and H Tohgi, and A Takahashi, and H Kanaya
October 1984, Archives of neurology,
Y Kuroiwa, and H Tohgi, and A Takahashi, and H Kanaya
December 1977, Annals of neurology,
Y Kuroiwa, and H Tohgi, and A Takahashi, and H Kanaya
December 2019, Epileptic disorders : international epilepsy journal with videotape,
Y Kuroiwa, and H Tohgi, and A Takahashi, and H Kanaya
October 2004, Journal of the neurological sciences,
Y Kuroiwa, and H Tohgi, and A Takahashi, and H Kanaya
January 1988, Epilepsia,
Y Kuroiwa, and H Tohgi, and A Takahashi, and H Kanaya
December 2003, Movement disorders : official journal of the Movement Disorder Society,
Y Kuroiwa, and H Tohgi, and A Takahashi, and H Kanaya
November 2009, Clinical neurology and neurosurgery,
Y Kuroiwa, and H Tohgi, and A Takahashi, and H Kanaya
October 1988, Magnetic resonance in medicine,
Y Kuroiwa, and H Tohgi, and A Takahashi, and H Kanaya
October 1986, Electroencephalography and clinical neurophysiology,
Y Kuroiwa, and H Tohgi, and A Takahashi, and H Kanaya
July 1986, Journal of neurology, neurosurgery, and psychiatry,
Copied contents to your clipboard!