Central chemical control of ventilation and response of turtles to inspired CO2. 1985

B M Hitzig, and J C Allen, and D C Jackson

The role of central chemosensors in the overall ventilatory response of freshwater turtles (Chrysemys scripta elegans) to the addition of CO2 in inspired gas was measured. Centrally mediated ventilatory responses were isolated in the unanesthetized animal by combining CO2 breathing and brain ventricular perfusion with mock cerebrospinal fluid (CSF) of varying acid-base status. Breathing 4.5% CO2 resulted in increases in both ventilatory frequency (f) and tidal volume (VT), with increases in VT providing most of the overall ventilatory change. Alterations in the acid-base status of the perfusate produced highly significant changes in f. VT changes were divorced from the acid-base status of the mock CSF perfusate. We therefore conclude that ventilatory changes in turtles, mediated by central chemosensors, are primarily affected by alterations in f. VT changes, associated with acid-base homeostatic mechanisms, are mediated by receptors outside the blood-brain barrier in these animals. On the basis of these data, we hypothesize that the increase in f observed when turtles breathe 4.5% CO2 is primarily mediated by the central chemosensors.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002552 Cerebral Ventricles Four CSF-filled (see CEREBROSPINAL FLUID) cavities within the cerebral hemispheres (LATERAL VENTRICLES), in the midline (THIRD VENTRICLE) and within the PONS and MEDULLA OBLONGATA (FOURTH VENTRICLE). Foramen of Monro,Cerebral Ventricular System,Cerebral Ventricle,Cerebral Ventricular Systems,Monro Foramen,System, Cerebral Ventricular,Systems, Cerebral Ventricular,Ventricle, Cerebral,Ventricles, Cerebral,Ventricular System, Cerebral,Ventricular Systems, Cerebral
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D000136 Acid-Base Equilibrium The balance between acids and bases in the BODY FLUIDS. The pH (HYDROGEN-ION CONCENTRATION) of the arterial BLOOD provides an index for the total body acid-base balance. Anion Gap,Acid-Base Balance,Acid Base Balance,Acid Base Equilibrium,Anion Gaps,Balance, Acid-Base,Equilibrium, Acid-Base,Gap, Anion,Gaps, Anion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014426 Turtles Any reptile including tortoises, fresh water, and marine species of the order Testudines with a body encased in a bony or cartilaginous shell consisting of a top (carapace) and a bottom (plastron) derived from the ribs. Sea Turtles,Terrapins,Tortoises,Sea Turtle,Terrapin,Tortoise,Turtle,Turtle, Sea,Turtles, Sea

Related Publications

B M Hitzig, and J C Allen, and D C Jackson
December 1982, Journal of applied physiology: respiratory, environmental and exercise physiology,
B M Hitzig, and J C Allen, and D C Jackson
May 1987, The American journal of physiology,
B M Hitzig, and J C Allen, and D C Jackson
November 1978, The American journal of physiology,
B M Hitzig, and J C Allen, and D C Jackson
January 1987, European journal of nuclear medicine,
B M Hitzig, and J C Allen, and D C Jackson
March 1987, Acta physiologica Scandinavica,
B M Hitzig, and J C Allen, and D C Jackson
March 1982, Journal of applied physiology: respiratory, environmental and exercise physiology,
B M Hitzig, and J C Allen, and D C Jackson
September 1993, Journal of applied physiology (Bethesda, Md. : 1985),
B M Hitzig, and J C Allen, and D C Jackson
June 1980, Journal of applied physiology: respiratory, environmental and exercise physiology,
B M Hitzig, and J C Allen, and D C Jackson
January 1984, Comparative biochemistry and physiology. A, Comparative physiology,
Copied contents to your clipboard!