Anti-tumour effect of humoral and cellular immunities mediated by a bacterial immunopotentiator, Lactobacillus casei, in mice. 1985

N Yasutake, and M Ohwaki, and M Mutai, and Y Koide, and T Yoshida

Administration of a mixture containing Lactobacillus casei YIT 9018 (LC9018) and methylcholanthrene-induced fibrosarcoma (Meth A) cells into the peritoneum of syngeneic BALB/c mice suppressed the tumour growth and protected the mice from tumour death. With the appearance of the anti-tumour activity, serum complement-dependent tumour cytotoxic (CDC) antibody was induced on the 5th day after the administration as a result of the adjuvant effect. The cytotoxic antibody was not found in serum on the 5th day after inoculation of Meth A cells alone, but it was induced before the mice died of the tumours. Adjuvant induction of the cytotoxic serum antibody at an early time was also observed using Kirsten murine sarcoma virus-transformed tumour (K234) cells. Both of these cytotoxic antibodies in sera from Meth A-suppressed and the tumour-bearing mice were specific for the tumour cells and were IgM class, since they were absorbed with rabbit anti-mouse IgM antibody. However, the cytotoxic antibody was not found in the peritoneal cavity which was the tumour inoculation site, but binding antibody against the tumour cells was faintly detected in the region using an enzyme-linked immunoabsorbent assay (ELISA). In neutralization tests, the cytotoxic antibody did not exert anti-tumour activity in recipient mice when it was administered to the mice along with the tumour cells or when it was administered i.v. at the time of tumour inoculation. Moreover, the cytotoxic antibody was not available for the antibody-dependent cell-mediated cytotoxicity (ADCC). These results suggest that the cytotoxic antibody did not exert anti-tumour activity in the tumour-suppressed mice. In contrast, peritoneal exudate cells (PEC) on the 5th day, and PEC and spleen cells on the 15th day after i.p. administration of the mixture exerted strong anti-tumour activity as measured by the Winn test. In conclusion, the adjuvant effect of LC9018 induced tumour-specific humoral and cellular immunities but the anti-tumour activity was dependent only on the cellular effectors of the host. The possible use of LC9018 in tumour immunotherapy is discussed.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007780 Lacticaseibacillus casei A rod-shaped bacterium isolated from milk and cheese, dairy products and dairy environments, sour dough, cow dung, silage, and human mouth, human intestinal contents and stools, and the human vagina. L. casei is CATALASE positive. Lactobacillus casei
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008297 Male Males
D008748 Methylcholanthrene A carcinogen that is often used in experimental cancer studies. 20-Methylcholanthrene,3-Methylcholanthrene,20 Methylcholanthrene,3 Methylcholanthrene
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009500 Neutralization Tests The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50). Neutralization Test,Test, Neutralization,Tests, Neutralization
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005354 Fibrosarcoma A sarcoma derived from deep fibrous tissue, characterized by bundles of immature proliferating fibroblasts with variable collagen formation, which tends to invade locally and metastasize by the bloodstream. (Stedman, 25th ed) Fibrosarcomas
D000276 Adjuvants, Immunologic Substances that augment, stimulate, activate, potentiate, or modulate the immune response at either the cellular or humoral level. The classical agents (Freund's adjuvant, BCG, Corynebacterium parvum, et al.) contain bacterial antigens. Some are endogenous (e.g., histamine, interferon, transfer factor, tuftsin, interleukin-1). Their mode of action is either non-specific, resulting in increased immune responsiveness to a wide variety of antigens, or antigen-specific, i.e., affecting a restricted type of immune response to a narrow group of antigens. The therapeutic efficacy of many biological response modifiers is related to their antigen-specific immunoadjuvanticity. Immunoactivators,Immunoadjuvant,Immunoadjuvants,Immunologic Adjuvant,Immunopotentiator,Immunopotentiators,Immunostimulant,Immunostimulants,Adjuvant, Immunologic,Adjuvants, Immunological,Immunologic Adjuvants,Immunological Adjuvant,Adjuvant, Immunological,Immunological Adjuvants

Related Publications

N Yasutake, and M Ohwaki, and M Mutai, and Y Koide, and T Yoshida
December 1996, Journal of pharmaceutical sciences,
N Yasutake, and M Ohwaki, and M Mutai, and Y Koide, and T Yoshida
June 1983, Hiroshima journal of medical sciences,
N Yasutake, and M Ohwaki, and M Mutai, and Y Koide, and T Yoshida
January 1983, Microbiology and immunology,
N Yasutake, and M Ohwaki, and M Mutai, and Y Koide, and T Yoshida
January 1989, Biotherapy (Dordrecht, Netherlands),
N Yasutake, and M Ohwaki, and M Mutai, and Y Koide, and T Yoshida
February 1982, Zhonghua Minguo wei sheng wu ji mian yi xue za zhi = Chinese journal of microbiology and immunology,
N Yasutake, and M Ohwaki, and M Mutai, and Y Koide, and T Yoshida
January 1988, Cancer immunology, immunotherapy : CII,
N Yasutake, and M Ohwaki, and M Mutai, and Y Koide, and T Yoshida
January 2000, Zhurnal mikrobiologii, epidemiologii i immunobiologii,
N Yasutake, and M Ohwaki, and M Mutai, and Y Koide, and T Yoshida
January 1985, Cancer immunology, immunotherapy : CII,
N Yasutake, and M Ohwaki, and M Mutai, and Y Koide, and T Yoshida
September 1994, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
N Yasutake, and M Ohwaki, and M Mutai, and Y Koide, and T Yoshida
January 1988, Biotherapy (Dordrecht, Netherlands),
Copied contents to your clipboard!