Macrophage activation to kill Leishmania major: activation of macrophages for intracellular destruction of amastigotes can be induced by both recombinant interferon-gamma and non-interferon lymphokines. 1985

C A Nacy, and A H Fortier, and M S Meltzer, and N A Buchmeier, and R D Schreiber

Macrophages treated with lymphokine (LK)-rich culture fluids from antigen- or mitogen-stimulated spleen cells or the hybridoma T cell 24/G1, or murine recombinant interferon-gamma (IFN-gamma) from either transfected monkey kidney cells (cos rIFN-gamma) or bacterial (E. coli) DNA (rIFN-gamma) developed the capacity to kill intracellular amastigotes of Leishmania major. Removal of IFN activity from LK by neutralizing fluid phase monoclonal anti-rIFN-gamma antibody, or by solid phase immunoadsorption, left residual macrophage activation factors that induced approximately 50% of the macrophage anti-leishmanial activity of untreated LK. In contrast, rIFN-gamma subjected to the same antibody treatments lost all capacity to induce this macrophage effector function. These results suggest that the intracellular destruction of amastigotes is regulated by several different factors. One of these factors is clearly IFN-gamma, which is pleiotropic in its effects on macrophage functions. The other non-IFN LK factors are immunochemically unrelated to IFN-gamma, and may regulate macrophage microbicidal activities in a more selective manner.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007891 Leishmania A genus of flagellate protozoa comprising several species that are pathogenic for humans. Organisms of this genus have an amastigote and a promastigote stage in their life cycles. As a result of enzymatic studies this single genus has been divided into two subgenera: Leishmania leishmania and Leishmania viannia. Species within the Leishmania leishmania subgenus include: L. aethiopica, L. arabica, L. donovani, L. enrietti, L. gerbilli, L. hertigi, L. infantum, L. major, L. mexicana, and L. tropica. The following species are those that compose the Leishmania viannia subgenus: L. braziliensis, L. guyanensis, L. lainsoni, L. naiffi, and L. shawi. Leishmania (Leishmania),Leishmania (Viannia),Leishmania leishmania,Leishmania viannia,Leishmania leishmanias,Leishmania viannias,Leishmanias,Leishmanias (Leishmania),Leishmanias (Viannia),leishmanias, Leishmania,viannias, Leishmania
D008222 Lymphokines Soluble protein factors generated by activated lymphocytes that affect other cells, primarily those involved in cellular immunity. Lymphocyte Mediators,Mediators, Lymphocyte
D008262 Macrophage Activation The process of altering the morphology and functional activity of macrophages so that they become avidly phagocytic. It is initiated by lymphokines, such as the macrophage activation factor (MAF) and the macrophage migration-inhibitory factor (MMIF), immune complexes, C3b, and various peptides, polysaccharides, and immunologic adjuvants. Activation, Macrophage,Activations, Macrophage,Macrophage Activations
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D004306 Dose-Response Relationship, Immunologic A specific immune response elicited by a specific dose of an immunologically active substance or cell in an organism, tissue, or cell. Immunologic Dose-Response Relationship,Relationship, Immunologic Dose-Response,Dose Response Relationship, Immunologic,Dose-Response Relationships, Immunologic,Immunologic Dose Response Relationship,Immunologic Dose-Response Relationships,Relationship, Immunologic Dose Response,Relationships, Immunologic Dose-Response

Related Publications

C A Nacy, and A H Fortier, and M S Meltzer, and N A Buchmeier, and R D Schreiber
March 1984, Journal of immunology (Baltimore, Md. : 1950),
C A Nacy, and A H Fortier, and M S Meltzer, and N A Buchmeier, and R D Schreiber
March 1984, Journal of immunology (Baltimore, Md. : 1950),
C A Nacy, and A H Fortier, and M S Meltzer, and N A Buchmeier, and R D Schreiber
July 1984, Journal of immunology (Baltimore, Md. : 1950),
C A Nacy, and A H Fortier, and M S Meltzer, and N A Buchmeier, and R D Schreiber
January 1984, Clinical and experimental immunology,
C A Nacy, and A H Fortier, and M S Meltzer, and N A Buchmeier, and R D Schreiber
September 1985, Cellular immunology,
C A Nacy, and A H Fortier, and M S Meltzer, and N A Buchmeier, and R D Schreiber
December 1987, Clinical and experimental immunology,
C A Nacy, and A H Fortier, and M S Meltzer, and N A Buchmeier, and R D Schreiber
January 1990, Journal of immunology (Baltimore, Md. : 1950),
C A Nacy, and A H Fortier, and M S Meltzer, and N A Buchmeier, and R D Schreiber
January 1995, Infection and immunity,
C A Nacy, and A H Fortier, and M S Meltzer, and N A Buchmeier, and R D Schreiber
December 1987, Journal of immunology (Baltimore, Md. : 1950),
C A Nacy, and A H Fortier, and M S Meltzer, and N A Buchmeier, and R D Schreiber
October 1984, Cancer research,
Copied contents to your clipboard!