Purification and characterization of the mitochondrial translocase from Euglena gracilis. 1985

S L Eberly, and L L Spremulli

The Euglena gracilis mitochondrial protein biosynthetic elongation factor G (EF-Gmt) has been purified in four steps to greater than 50% homogeneity by use of a fusidic acid affinity procedure and conventional chromatographic techniques. The purification scheme results in 1100-fold purification with about 3% recovery of the total EF-G activity present in the postribosomal supernatant prepared from whole cell extracts. E. gracilis EF-Gmt has an approximate molecular weight of 76,000, comparable to that observed for procaryotic translocases. As is the case for other translocases which have been examined, pretreatment of E. gracilis EF-Gmt with N-ethylmaleimide results in a loss of polymerization activity, indicating a role for an essential cysteine residue in catalytic activity. GDP partially protects EF-Gmt from N-ethylmaleimide inactivation. E. gracilis EF-Gmt functions well on both Escherichia coli and E. gracilis chloroplast ribosomes, but has negligible activity on wheat germ cytoplasmic ribosomes. In this respect, it differs significantly from the mitochondrial translocase of yeast which has very little activity on chloroplast ribosomes. When assayed on E. coli ribosomes, E. gracilis EF-Gmt is sensitive to the steroid antibiotic, fusidic acid, at levels similar to that required for inactivation of E. coli EF-G. It is less sensitive than E. gracilis chloroplast EF-G, and is more sensitive than Bacillus subtilis EF-G. When assayed on E. gracilis chloroplast ribosomes, the same trends in sensitivities are observed, although the exact level of fusidic acid required for inactivation is slightly altered.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010445 Peptide Elongation Factors Protein factors uniquely required during the elongation phase of protein synthesis. Elongation Factor,Elongation Factors, Peptide,Factor, Elongation,Factors, Peptide Elongation
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide
D005056 Euglena gracilis A species of fresh-water, flagellated EUKARYOTES in the phylum EUGLENIDA. Euglena gracili,gracilis, Euglena
D006153 Guanosine Diphosphate A guanine nucleotide containing two phosphate groups esterified to the sugar moiety. GDP,Guanosine 5'-Diphosphate,Guanosine 5'-Trihydrogen Diphosphate,5'-Diphosphate, Guanosine,5'-Trihydrogen Diphosphate, Guanosine,Diphosphate, Guanosine,Diphosphate, Guanosine 5'-Trihydrogen,Guanosine 5' Diphosphate,Guanosine 5' Trihydrogen Diphosphate

Related Publications

S L Eberly, and L L Spremulli
January 1997, Methods in enzymology,
S L Eberly, and L L Spremulli
July 1978, The Biochemical journal,
S L Eberly, and L L Spremulli
March 1999, Journal of biochemistry,
S L Eberly, and L L Spremulli
August 1987, The Journal of biological chemistry,
S L Eberly, and L L Spremulli
October 1996, Journal of biochemistry,
S L Eberly, and L L Spremulli
July 1987, The Journal of biological chemistry,
S L Eberly, and L L Spremulli
March 1973, The Journal of biological chemistry,
S L Eberly, and L L Spremulli
November 1987, Journal of biochemistry,
S L Eberly, and L L Spremulli
January 1991, Protein expression and purification,
Copied contents to your clipboard!