Differential proliferative responses of cultured Schwann cells to axolemma and myelin-enriched fractions. II. Morphological studies. 1985

J H Meador-Woodruff, and J E Yoshino, and J W Bigbee, and B L Lewis, and G H Devries

Axolemma-enriched and myelin-enriched fractions were prepared from bovine CNS white matter and conjugated to fluorescein isothiocyanate (FITC). Both unlabelled and FITC-labelled axolemma and myelin were mitogenic for cultured rat Schwann cells. Treatment of Schwann cells with the FITC-labelled mitogens for up to 24 h resulted in two distinct morphological appearances. FITC-myelin-treated cells were filled with numerous round, fluorescent-labelled intracellular vesicles, while FITC-axolemma-treated cells appeared to be coated with a patchy, ill-defined fluorescence, primarily concentrated around the cell body but extending onto the cell processes. These observations were corroborated under phase microscopy. Electron microscopy revealed multiple, membrane-bound, membrane-containing phagosomes within myelin-treated cells and to a far lesser extent in axolemma-treated cells. The effect on the expression of the myelin-mediated and axolemma-mediated mitogenic signal when Schwann cells were treated with the lysosomal inhibitors, ammonium chloride and chloroquine, was evaluated. The mitogenicity of myelin was reduced 70-80% by these agents whereas the mitogenicity of axolemma was not significantly altered under these conditions. These results suggest that axolemma and myelin stimulate the proliferation of cultured Schwann cells by different mechanisms. Myelin requires endocytosis and lysosomal processing for expression of its mitogenic signal; in contrast, the mitogenicity of axolemma may be transduced at the Schwann cell surface.

UI MeSH Term Description Entries
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002738 Chloroquine The prototypical antimalarial agent with a mechanism that is not well understood. It has also been used to treat rheumatoid arthritis, systemic lupus erythematosus, and in the systemic therapy of amebic liver abscesses. Aralen,Arechine,Arequin,Chingamin,Chlorochin,Chloroquine Sulfate,Chloroquine Sulphate,Khingamin,Nivaquine,Sulfate, Chloroquine,Sulphate, Chloroquine
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J H Meador-Woodruff, and J E Yoshino, and J W Bigbee, and B L Lewis, and G H Devries
August 1987, Journal of neurocytology,
J H Meador-Woodruff, and J E Yoshino, and J W Bigbee, and B L Lewis, and G H Devries
July 1983, Brain research,
J H Meador-Woodruff, and J E Yoshino, and J W Bigbee, and B L Lewis, and G H Devries
February 1982, Brain research,
J H Meador-Woodruff, and J E Yoshino, and J W Bigbee, and B L Lewis, and G H Devries
April 1987, Journal of neurochemistry,
J H Meador-Woodruff, and J E Yoshino, and J W Bigbee, and B L Lewis, and G H Devries
July 1984, Biochemical and biophysical research communications,
J H Meador-Woodruff, and J E Yoshino, and J W Bigbee, and B L Lewis, and G H Devries
October 1996, Journal of neuroscience research,
J H Meador-Woodruff, and J E Yoshino, and J W Bigbee, and B L Lewis, and G H Devries
January 1981, Neuroscience letters,
J H Meador-Woodruff, and J E Yoshino, and J W Bigbee, and B L Lewis, and G H Devries
May 1989, Journal of neurochemistry,
J H Meador-Woodruff, and J E Yoshino, and J W Bigbee, and B L Lewis, and G H Devries
December 1981, Brain research,
J H Meador-Woodruff, and J E Yoshino, and J W Bigbee, and B L Lewis, and G H Devries
March 2004, Journal of neuroscience research,
Copied contents to your clipboard!