Fluorescence lifetime quenching and anisotropy studies of ribonuclease T1. 1985

D R James, and D R Demmer, and R P Steer, and R E Verrall

The time-resolved fluorescence of the lone tryptophanyl residue of ribonuclease T1 was investigated by using a mode-locked, frequency-doubled picosecond dye laser. The fluorescence decay could be characterized by a single exponential function with a lifetime of 3.9 ns. The fluorescence was readily quenched by uncharged solutes but was unaffected by iodide ion. These observations are interpreted in terms of the electrostatic properties of the amino acid residues at the active site of the protein, which would appear to restrict the access of solute species to the tryptophanyl residue. The temperature dependence of the fluorescence lifetime and anisotropy decay time could be rationalized in terms of a model which postulates a significant ordering of the solvent layer immediately surrounding the surface of the protein.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D004722 Endoribonucleases A family of enzymes that catalyze the endonucleolytic cleavage of RNA. It includes EC 3.1.26.-, EC 3.1.27.-, EC 3.1.30.-, and EC 3.1.31.-. Endoribonuclease
D006163 Ribonuclease T1 An enzyme catalyzing the endonucleolytic cleavage of RNA at the 3'-position of a guanylate residue. EC 3.1.27.3. Guanyloribonuclease,RNase T1,Ribonuclease N1,Aspergillus oryzae Ribonuclease,Guanyl-Specific RNase,RNase Apl,RNase F1,RNase Pch 1,RNase ST,Ribonuclease F1,Ribonuclease F2,Ribonuclease ST,Ribonuclease T-1,T 1 RNase,Guanyl Specific RNase,RNase, Guanyl-Specific,RNase, T 1,Ribonuclease T 1,Ribonuclease, Aspergillus oryzae
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D014364 Tryptophan An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. Ardeydorm,Ardeytropin,L-Tryptophan,L-Tryptophan-ratiopharm,Levotryptophan,Lyphan,Naturruhe,Optimax,PMS-Tryptophan,Trofan,Tryptacin,Tryptan,Tryptophan Metabolism Alterations,ratio-Tryptophan,L Tryptophan,L Tryptophan ratiopharm,PMS Tryptophan,ratio Tryptophan

Related Publications

D R James, and D R Demmer, and R P Steer, and R E Verrall
September 1987, Biophysical journal,
D R James, and D R Demmer, and R P Steer, and R E Verrall
February 1992, Biochimica et biophysica acta,
D R James, and D R Demmer, and R P Steer, and R E Verrall
August 1988, Biophysical journal,
D R James, and D R Demmer, and R P Steer, and R E Verrall
September 1996, Journal of fluorescence,
D R James, and D R Demmer, and R P Steer, and R E Verrall
June 1998, Photochemistry and photobiology,
D R James, and D R Demmer, and R P Steer, and R E Verrall
June 1979, Biochemistry,
D R James, and D R Demmer, and R P Steer, and R E Verrall
August 1984, Biochemistry,
D R James, and D R Demmer, and R P Steer, and R E Verrall
October 1986, Biochemistry,
D R James, and D R Demmer, and R P Steer, and R E Verrall
August 1993, Photochemistry and photobiology,
D R James, and D R Demmer, and R P Steer, and R E Verrall
December 1987, Biophysical chemistry,
Copied contents to your clipboard!