Two Lyt-2 polypeptides arise from a single gene by alternative splicing patterns of mRNA. 1985

R Zamoyska, and A C Vollmer, and K C Sizer, and C W Liaw, and J R Parnes

The Lyt-2/3 molecule is a glycoprotein expressed on T lymphocytes and has classically been considered a marker for the cytotoxic/suppressor T cell subset. It has been postulated to be a receptor for class I major histocompatibility complex proteins. We have used a cDNA clone encoding the analogous human protein, Leu-2/T8, to isolate mouse cDNA clones, which were used as probes to isolate mouse genomic clones. By transfection we have shown that the mouse homologue of Leu-2/T8 is Lyt-2 and not Lyt-3. We have further demonstrated that two Lyt-2 polypeptide chains are encoded by a single gene and result from alternative modes of mRNA splicing. The nucleotide sequence of cDNA clones encoding each of these polypeptide chains has been determined and shows the difference between the two Lyt-2 polypeptide chains to be in the lengths of their cytoplasmic tails.

UI MeSH Term Description Entries
D007739 L Cells A cultured line of C3H mouse FIBROBLASTS that do not adhere to one another and do not express CADHERINS. Earle's Strain L Cells,L Cell Line,L Cells (Cell Line),L-Cell Line,L-Cells,L-Cells, Cell Line,L929 Cell Line,L929 Cells,NCTC Clone 929 Cells,NCTC Clone 929 of Strain L Cells,Strain L Cells,Cell Line L-Cell,Cell Line L-Cells,Cell Line, L,Cell Line, L929,Cell Lines, L,Cell, L,Cell, L (Cell Line),Cell, L929,Cell, Strain L,Cells, L,Cells, L (Cell Line),Cells, L929,Cells, Strain L,L Cell,L Cell (Cell Line),L Cell Lines,L Cell, Strain,L Cells, Cell Line,L Cells, Strain,L-Cell,L-Cell Lines,L-Cell, Cell Line,L929 Cell,Strain L Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens
D000950 Antigens, Ly A group of lymphocyte surface antigens located on mouse LYMPHOCYTES. Specific Ly antigens are useful markers for distinguishing subpopulations of lymphocytes. Ly Antigens
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

R Zamoyska, and A C Vollmer, and K C Sizer, and C W Liaw, and J R Parnes
May 1986, Proceedings of the National Academy of Sciences of the United States of America,
R Zamoyska, and A C Vollmer, and K C Sizer, and C W Liaw, and J R Parnes
February 1991, Molecular and cellular biology,
R Zamoyska, and A C Vollmer, and K C Sizer, and C W Liaw, and J R Parnes
April 2002, The Journal of biological chemistry,
R Zamoyska, and A C Vollmer, and K C Sizer, and C W Liaw, and J R Parnes
March 1991, Gene,
R Zamoyska, and A C Vollmer, and K C Sizer, and C W Liaw, and J R Parnes
January 1994, Cellular & molecular biology research,
R Zamoyska, and A C Vollmer, and K C Sizer, and C W Liaw, and J R Parnes
November 1988, Trends in genetics : TIG,
R Zamoyska, and A C Vollmer, and K C Sizer, and C W Liaw, and J R Parnes
August 1989, The Plant cell,
R Zamoyska, and A C Vollmer, and K C Sizer, and C W Liaw, and J R Parnes
May 1992, Blood,
R Zamoyska, and A C Vollmer, and K C Sizer, and C W Liaw, and J R Parnes
January 1988, Neurochemistry international,
R Zamoyska, and A C Vollmer, and K C Sizer, and C W Liaw, and J R Parnes
August 2003, Science (New York, N.Y.),
Copied contents to your clipboard!