Genetic regulation of the cytochrome P-450 system in Drosophila melanogaster. II. Localization of some genes regulating cytochrome P-450 activity. 1985

I Hällström

The localization of some genes determining the capacity for some cytochrome P-450 -dependent reactions have been studied in adult Drosophila. Strains with genetically determined high or low enzyme activities were crossed with strains carrying recessive visible markers on the chromosomes, and enzyme activities were measured in microsomes from recombinant F2 progeny. A dominantly inherited high p-nitroanisole (PNA) demethylation and biphenyl 3-hydroxylation in insecticide-resistant strains were both shown to be located around 65 cM on the second chromosome, regulated by one gene or closely linked genes. This localizes these activities to the same region as the gene responsible for the cross resistance to several classes of insecticides and a high metabolism of vinyl chloride in resistant strains. The occurrence of a regulatory gene mutation as a basis for the insecticide resistance is proposed. Hydroxylation of benzo[a]pyrene (BP) and deethylation of 7-ethoxy-coumarin seems to be determined by two third chromosome genes, at approx. 51 and 58 cM, respectively. The capacity for biphenyl 4-hydroxylation was shown to be determined by two genes on the second chromosome, one at or to the left of the gene black (48 cM) responsible for a low metabolism in strain Berlin K, and one at about 63 cM giving high formation of this metabolite in Oregon R. The latter could not be separated from the gene in insecticide-resistant strains at c:a 65 cM discussed above on the basis of the genetic localization, but observations supporting the occurrence of two closely linked genes regulating these different activities are available. In conclusion, 4-5 genes determining the capacity for several reactions, being a part of the genetic regulation of the cytochrome P-450 system in Drosophila melanogaster were indicated.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D010105 Oxygenases Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules. Oxygenase
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001189 Aryl Hydrocarbon Hydroxylases A large group of cytochrome P-450 (heme-thiolate) monooxygenases that complex with NAD(P)H-FLAVIN OXIDOREDUCTASE in numerous mixed-function oxidations of aromatic compounds. They catalyze hydroxylation of a broad spectrum of substrates and are important in the metabolism of steroids, drugs, and toxins such as PHENOBARBITAL, carcinogens, and insecticides. Microsomal Monooxygenases,Xenobiotic Monooxygenases,Hydroxylases, Aryl Hydrocarbon,Monooxygenases, Microsomal,Monooxygenases, Xenobiotic
D001579 Benzopyrene Hydroxylase A drug-metabolizing, cytochrome P-448 (P-450) enzyme which catalyzes the hydroxylation of benzopyrene to 3-hydroxybenzopyrene in the presence of reduced flavoprotein and molecular oxygen. Also acts on certain anthracene derivatives. An aspect of EC 1.14.14.1. Benzopyrene-3-Monooxygenase,Benzo(a)pyrene Hydroxylase,Benzo(a)pyrene Monooxygenase,Benzopyrene 3 Monooxygenase,Hydroxylase, Benzopyrene

Related Publications

I Hällström
April 1995, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
I Hällström
May 1987, Molecular pharmacology,
I Hällström
January 1986, CRC critical reviews in biochemistry,
I Hällström
January 1987, European journal of clinical pharmacology,
I Hällström
December 1991, Biulleten' eksperimental'noi biologii i meditsiny,
I Hällström
November 2001, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke,
I Hällström
January 2002, Nihon eiseigaku zasshi. Japanese journal of hygiene,
Copied contents to your clipboard!