Heavy charged-particle Bragg peak radiosurgery for intracranial vascular disorders. 1985

J I Fabrikant, and J T Lyman, and K A Frankel

The program at Donner Pavilion has applied nuclear medicine research to the diagnosis and radiosurgical treatment of life-threatening intracranial vascular disorders that affect approximately one million Americans. Stereotactic heavy-ion Bragg peak radiosurgery, using narrow beams of heavy ions (helium), demonstrates superior biological and physical characteristics in brain over X and gamma rays and protons, viz., improved dose distribution in the Bragg peak, sharp lateral and distal borders, and less multiple scattering and range straggling for the same residual range in CNS tissue. Examination of CNS tissue response and alteration of cerebral blood-flow dynamics related to heavy-ion Bragg peak radiosurgery is being undertaken using three-dimensional treatment planning and quantitative imaging utilizing cerebral angiography, computerized tomography (CT), magnetic resonance imaging (MRI), cine-CT, xenon X-ray CT, and positron emission tomography (PET). Also under examination are the physical properties of narrow heavy-ion beams for improving methods of dose delivery and dose distribution and for establishing clinical RBE/LET and dose-response relationships for human CNS tissues. Based on the evaluation and treatment with stereotactically directed narrow beams of heavy ions of over 130 patients, with cerebral angiography and CT scanning, and with MRI and radioisotope scanning of selected patients, plus extensive clinical and neuroradiological follow-up, it appears that heavy-ion radiosurgery obliterates intracranial arteriovenous malformations or protects against rebleeding with reduced morbidity and mortality.

UI MeSH Term Description Entries
D008297 Male Males
D008722 Methods A series of steps taken in order to conduct research. Techniques,Methodological Studies,Methodological Study,Procedures,Studies, Methodological,Study, Methodological,Method,Procedure,Technique
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D011882 Radiotherapy, High-Energy Radiotherapy using high-energy (megavolt or higher) ionizing radiation. Types of radiation include gamma rays, produced by a radioisotope within a teletherapy unit; x-rays, electrons, protons, alpha particles (helium ions) and heavy charged ions, produced by particle acceleration; and neutrons and pi-mesons (pions), produced as secondary particles following bombardment of a target with a primary particle. Megavolt Radiotherapy,High-Energy Radiotherapy,Radiotherapy, Megavolt,High Energy Radiotherapy,Radiotherapy, High Energy
D002533 Cerebral Angiography Radiography of the vascular system of the brain after injection of a contrast medium. Angiography, Cerebral,Angiographies, Cerebral,Cerebral Angiographies
D002538 Intracranial Arteriovenous Malformations Congenital vascular anomalies in the brain characterized by direct communication between an artery and a vein without passing through the CAPILLARIES. The locations and size of the shunts determine the symptoms including HEADACHES; SEIZURES; STROKE; INTRACRANIAL HEMORRHAGES; mass effect; and vascular steal effect. Arteriovenous Malformations, Cerebral,Intracranial Arteriovenous Malformations, Congenital,AVM (Arteriovenous Malformation) Intracranial,Cerebral Arteriovenous Malformations,Congenital Intracranial Arteriovenous Malformations,Intracranial Arteriovenous Malformation, Ruptured,Ruptured Intracranial Arteriovenous Malformation,Arteriovenous Malformation, Cerebral,Arteriovenous Malformation, Intracranial,Arteriovenous Malformations, Intracranial,Cerebral Arteriovenous Malformation,Intracranial Arteriovenous Malformation,Malformation, Cerebral Arteriovenous,Malformation, Intracranial Arteriovenous,Malformations, Cerebral Arteriovenous,Malformations, Intracranial Arteriovenous
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D005260 Female Females
D006371 Helium A noble gas with the atomic symbol He, atomic number 2, and atomic weight 4.003. It is a colorless, odorless, tasteless gas that is not combustible and does not support combustion. It was first detected in the sun and is now obtained from natural gas. Medically it is used as a diluent for other gases, being especially useful with oxygen in the treatment of certain cases of respiratory obstruction, and as a vehicle for general anesthetics. Helium-4,Helium 4

Related Publications

J I Fabrikant, and J T Lyman, and K A Frankel
July 1990, The New England journal of medicine,
J I Fabrikant, and J T Lyman, and K A Frankel
January 1991, Stereotactic and functional neurosurgery,
J I Fabrikant, and J T Lyman, and K A Frankel
August 1988, Radiology,
J I Fabrikant, and J T Lyman, and K A Frankel
January 2021, Biomedicines,
J I Fabrikant, and J T Lyman, and K A Frankel
January 1991, Stereotactic and functional neurosurgery,
J I Fabrikant, and J T Lyman, and K A Frankel
June 2011, Nihon rinsho. Japanese journal of clinical medicine,
J I Fabrikant, and J T Lyman, and K A Frankel
January 1981, Annual review of biophysics and bioengineering,
J I Fabrikant, and J T Lyman, and K A Frankel
January 1986, Annals of clinical research,
Copied contents to your clipboard!