Biphasic stimulatory effects of estrogen on gonadotropin surges induced by continuous administration of gonadotropin-releasing hormone in women. 1985

S Araki, and M Motoyama, and K Chikazawa, and K Ijima, and T Tamada

The present experiments were performed to study the effects of preovulatory levels of estrogen on GnRH-induced gonadotropin release. Twelve female volunteers in various phases of the menstrual cycle received estradiol infusion for 66 h at a constant rate of 500 micrograms/24 h which is grossly equivalent to its production rate during the preovulatory follicular phase. In 8 of the women, GnRH was administered concomitantly from 6 h after the initiation of estradiol infusion. The administered doses of GnRH were 2.5 and 5 micrograms/h. Blood samples obtained throughout the infusion were analysed for LH, FSH, estradiol and progesterone. The sole administration of estradiol failed to induce the positive feedback effect on gonadotropin release within the experimental period in the early follicular phase (days 3-7) in 4 women. In 5 women treated during the follicular phase, remarkable LH releases were induced after a lag period by the infusion of both GnRH and estradiol. The induced LH surge formed a prolonged biphasic pattern. Although a similar pattern of FSH was observed in some cases, its response was minimal compared with that of LH. In 3 women during the luteal phase, however, a combined administration of estradiol and GnRH induced only a short term release of LH which was terminated in only 12 h. The present data indicate that 1) Preovulatory levels of estrogen affect the late part of the LH surge which is induced by constant administration of low doses of GnRH resulting in a prolonged biphasic release of LH, and 2) These effects of both hormones are not manifest in the presence of high levels of progesterone. These results indicate the possibility of a role of GnRH and estrogen in the mechanism of the prolonged elevation of a gonadotropin surge at mid-cycle.

UI MeSH Term Description Entries
D007263 Infusions, Parenteral The administration of liquid medication, nutrient, or other fluid through some other route than the alimentary canal, usually over minutes or hours, either by gravity flow or often by infusion pumping. Intra-Abdominal Infusions,Intraperitoneal Infusions,Parenteral Infusions,Peritoneal Infusions,Infusion, Intra-Abdominal,Infusion, Intraperitoneal,Infusion, Parenteral,Infusion, Peritoneal,Infusions, Intra-Abdominal,Infusions, Intraperitoneal,Infusions, Peritoneal,Intra Abdominal Infusions,Intra-Abdominal Infusion,Intraperitoneal Infusion,Parenteral Infusion,Peritoneal Infusion
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D008597 Menstrual Cycle The period from onset of one menstrual bleeding (MENSTRUATION) to the next in an ovulating woman or female primate. The menstrual cycle is regulated by endocrine interactions of the HYPOTHALAMUS; the PITUITARY GLAND; the ovaries; and the genital tract. The menstrual cycle is divided by OVULATION into two phases. Based on the endocrine status of the OVARY, there is a FOLLICULAR PHASE and a LUTEAL PHASE. Based on the response in the ENDOMETRIUM, the menstrual cycle is divided into a proliferative and a secretory phase. Endometrial Cycle,Ovarian Cycle,Cycle, Endometrial,Cycle, Menstrual,Cycle, Ovarian,Cycles, Endometrial,Cycles, Menstrual,Cycles, Ovarian,Endometrial Cycles,Menstrual Cycles,Ovarian Cycles
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

S Araki, and M Motoyama, and K Chikazawa, and K Ijima, and T Tamada
May 1991, The Journal of steroid biochemistry and molecular biology,
S Araki, and M Motoyama, and K Chikazawa, and K Ijima, and T Tamada
October 1986, Endocrinologia japonica,
S Araki, and M Motoyama, and K Chikazawa, and K Ijima, and T Tamada
April 2000, Endocrinology,
S Araki, and M Motoyama, and K Chikazawa, and K Ijima, and T Tamada
April 2000, Endocrinology,
S Araki, and M Motoyama, and K Chikazawa, and K Ijima, and T Tamada
August 1990, The Journal of laboratory and clinical medicine,
S Araki, and M Motoyama, and K Chikazawa, and K Ijima, and T Tamada
December 1975, The Journal of clinical endocrinology and metabolism,
S Araki, and M Motoyama, and K Chikazawa, and K Ijima, and T Tamada
August 2010, Endocrine reviews,
S Araki, and M Motoyama, and K Chikazawa, and K Ijima, and T Tamada
June 2000, The Journal of clinical endocrinology and metabolism,
Copied contents to your clipboard!