Substrate selection by RNA polymerase from E. coli. The role of ribose and 5'-triphosphate fragments, and nucleotides interaction. 1985

P Szafrański, and W J Smagowicz, and K L Wierzchowski

Steady-state kinetic studies of the rifampicin-effected abortive initiation of transcription by E. coli RNA polymerase (EC 2.7.7.6) on the A1 T7 phage promoter were carried out with the use of ATP, UTP and a number of their appropriately modified analogues. The kinetic parameters KiA, KmB, Ki and KsB characterizing the affinity of the substrates and inhibitors of the reaction to the initiation and elongation sites of the enzyme:promoter and the enzyme:promoter:nucleoside triphosphate complexes were determined therefrom. Their comparative analysis indicated that 1) the triphosphate chain of the initiating purine nucleoside triphosphate interacts with some protein acceptor groups through the alpha- and beta-phosphate residues; the phosphates are engaged in binding of nucleoside triphosphates at the elongation site in the absence of the primer nucleotide; 2) the ribose 2'-OH of the elongating nucleotide, but neither of the ribose hydroxyl groups of the initiating nucleotide, participate in substrate recognition by protein receptors; 3) either substrate, ATP or UTP, bound to the initiation complex increases by about the same factor (greater than or equal to 10) the affinity of the other to its binding site; 4) the 3'-OH of the primer nucleotide and the gamma-phosphate of the elongating nucleotide are involved in the synergistic interaction of the substrates; alpha- and beta-phosphates of the elongating nucleotide, bound to some protein receptors, also contribute to this process. It is postulated that the interaction of substrates is mediated through an Mg2+ ion, known to be required for binding of the substrates in the elongation site, and a minimal molecular model of a PuoTP:Mg (II): nucleoside triphosphate chelate complex in the catalytic centre of the transcription initiation open complex is proposed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D003838 Deoxyadenine Nucleotides Adenine nucleotides which contain deoxyribose as the sugar moiety. Deoxyadenosine Phosphates,Nucleotides, Deoxyadenine,Phosphates, Deoxyadenosine
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012266 Ribose A pentose active in biological systems usually in its D-form. D-Ribose,D Ribose
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed

Related Publications

P Szafrański, and W J Smagowicz, and K L Wierzchowski
October 1976, FEBS letters,
P Szafrański, and W J Smagowicz, and K L Wierzchowski
May 1981, Biochemical and biophysical research communications,
P Szafrański, and W J Smagowicz, and K L Wierzchowski
April 1977, Biochemical and biophysical research communications,
P Szafrański, and W J Smagowicz, and K L Wierzchowski
October 1976, Biochemical and biophysical research communications,
P Szafrański, and W J Smagowicz, and K L Wierzchowski
December 1981, Nucleic acids research,
P Szafrański, and W J Smagowicz, and K L Wierzchowski
March 1979, Nucleic acids research,
P Szafrański, and W J Smagowicz, and K L Wierzchowski
September 1980, Biochemical and biophysical research communications,
P Szafrański, and W J Smagowicz, and K L Wierzchowski
October 1979, Nucleic acids research,
P Szafrański, and W J Smagowicz, and K L Wierzchowski
July 1967, Biochimica et biophysica acta,
Copied contents to your clipboard!