Effects of aging at the adrenergic cardiac neuroeffector junction. 1986

P B Goldberg, and M S Kreider, and M R McLean, and J Roberts

Adrenergic neural degeneration was seen to increase with age. This is thought to contribute to the decreased cardiac content of the transmitter. Pharmacologically, it was found with the use of tyramine that virtually all of the norepinephrine (NE) pool is available for release, and that there is no difference in the amount of NE released in relation to age. Cardiac responsiveness to adrenergic agonists decreases with age. Our results suggest that this is caused in great measure by increased activity of the prejunctional, neuronal uptake mechanism in the older animal.

UI MeSH Term Description Entries
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009451 Neuroeffector Junction The synapse between a neuron (presynaptic) and an effector cell other than another neuron (postsynaptic). Neuroeffector junctions include synapses onto muscles and onto secretory cells. Junction, Neuroeffector,Junctions, Neuroeffector,Neuroeffector Junctions
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D003042 Cocaine An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine HCl,Cocaine Hydrochloride,HCl, Cocaine,Hydrochloride, Cocaine
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

P B Goldberg, and M S Kreider, and M R McLean, and J Roberts
March 1990, Mechanisms of ageing and development,
P B Goldberg, and M S Kreider, and M R McLean, and J Roberts
June 1988, The Journal of pharmacology and experimental therapeutics,
P B Goldberg, and M S Kreider, and M R McLean, and J Roberts
December 1989, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
P B Goldberg, and M S Kreider, and M R McLean, and J Roberts
June 1993, Naunyn-Schmiedeberg's archives of pharmacology,
P B Goldberg, and M S Kreider, and M R McLean, and J Roberts
September 1982, Anesthesia and analgesia,
P B Goldberg, and M S Kreider, and M R McLean, and J Roberts
November 2004, Hypertension (Dallas, Tex. : 1979),
P B Goldberg, and M S Kreider, and M R McLean, and J Roberts
January 1990, Annals of the New York Academy of Sciences,
P B Goldberg, and M S Kreider, and M R McLean, and J Roberts
September 1993, Experimental physiology,
P B Goldberg, and M S Kreider, and M R McLean, and J Roberts
March 1976, The Journal of pharmacology and experimental therapeutics,
P B Goldberg, and M S Kreider, and M R McLean, and J Roberts
December 1980, Circulation research,
Copied contents to your clipboard!