Distribution of gamma-carboxyglutamic acid residues in partially carboxylated human prothrombins. 1986

M Borowski, and B C Furie, and B Furie

The role of gamma-carboxyglutamic acid in prothrombin has been examined using partially carboxylated variant prothrombins isolated from a person with a hereditary defect in vitamin K-dependent carboxylation. These species differ in gamma-carboxyglutamic acid content, distribution, and function, as monitored by metal binding properties, conformational transitions, phospholipid binding, and calcium-dependent coagulant activity (Borowski, M., Furie, B. C., Goldsmith, G. H., and Furie, B. (1985) J. Biol. Chem. 260, 9258-9264). The distribution of gamma-carboxyglutamic acids in the variant prothrombin species was determined by specific tritium incorporation into gamma-carboxyglutamic acid residues, thermal decarboxylation, and automated Edman degradation. gamma-Carboxyglutamic acid residues in the partially carboxylated prothrombins were identified by the assay of tritium in the resultant glutamic acid residues in the acarboxyprothrombins. The results indicate that variant prothrombins 1-3 are nearly homogeneous populations of partially carboxylated prothrombins. The ability of prothrombin to undergo a metal-induced conformational change and to bind to phospholipid vesicles correlated closely to the presence of a gamma-carboxyglutamic acid at residue 16. This residue is likely involved in the formation of a critical high affinity metal-binding site, possibly formed by Gla 16 and Gla 25 and/or Gla 26. A second high affinity metal-binding site, present in all of the variant prothrombin species, is defined, as an upper limit, by Gla 6, Gla 14, Gla 19, and Gla 20. This region is likely responsible for the interaction of certain of the conformation-specific antibodies to the metal-stabilized conformer of prothrombin.

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011516 Prothrombin A plasma protein that is the inactive precursor of thrombin. It is converted to thrombin by a prothrombin activator complex consisting of factor Xa, factor V, phospholipid, and calcium ions. Deficiency of prothrombin leads to hypoprothrombinemia. Coagulation Factor II,Factor II,Blood Coagulation Factor II,Differentiation Reversal Factor,Factor II, Coagulation,Factor, Differentiation Reversal,II, Coagulation Factor
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014812 Vitamin K A lipid cofactor that is required for normal blood clotting. Several forms of vitamin K have been identified: VITAMIN K 1 (phytomenadione) derived from plants, VITAMIN K 2 (menaquinone) from bacteria, and synthetic naphthoquinone provitamins, VITAMIN K 3 (menadione). Vitamin K 3 provitamins, after being alkylated in vivo, exhibit the antifibrinolytic activity of vitamin K. Green leafy vegetables, liver, cheese, butter, and egg yolk are good sources of vitamin K.
D015055 1-Carboxyglutamic Acid Found in various tissues, particularly in four blood-clotting proteins including prothrombin, in kidney protein, in bone protein, and in the protein present in various ectopic calcifications. gamma-Carboxyglutamate,gamma-Carboxyglutamic Acid,3-Amino-1,1,3-propanetricarboxylic Acid,1 Carboxyglutamic Acid,gamma Carboxyglutamate,gamma Carboxyglutamic Acid

Related Publications

M Borowski, and B C Furie, and B Furie
August 1989, Biochemistry and cell biology = Biochimie et biologie cellulaire,
M Borowski, and B C Furie, and B Furie
January 1985, The Journal of biological chemistry,
M Borowski, and B C Furie, and B Furie
September 1976, Biochimica et biophysica acta,
M Borowski, and B C Furie, and B Furie
November 1988, Biochemistry,
M Borowski, and B C Furie, and B Furie
January 1984, Methods in enzymology,
M Borowski, and B C Furie, and B Furie
September 1977, Biochimica et biophysica acta,
M Borowski, and B C Furie, and B Furie
September 1978, Biochimica et biophysica acta,
M Borowski, and B C Furie, and B Furie
October 1976, Clinica chimica acta; international journal of clinical chemistry,
Copied contents to your clipboard!