Purification and characterization of peptidylglycine alpha-amidating monooxygenase from bovine neurointermediate pituitary. 1986

A S Murthy, and R E Mains, and B A Eipper

Extracts of bovine neurointermediate pituitary secretory granules and frozen bovine neurointermediate pituitary contain multiple forms of peptidylglycine alpha-amidating monooxygenase (PAM) activity differing in apparent molecular weight and in charge. Metal chelate affinity chromatography, substrate affinity chromatography, and gel filtration resulted in the purification of two forms of amidation activity from frozen bovine neurointermediate pituitary: PAM-A, apparent molecular weight 54,000, was purified 7,000-fold and PAM-B, apparent molecular weight 38,000, was purified 21,000-fold. Enzyme activity of similar molecular weights was observed in the starting material. Purified PAM-A and PAM-B correspond to two of the three charge forms present in crude extracts, and both exhibited optimal activity at alkaline pH. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of PAM-B revealed the presence of two bands with apparent molecular weights of 42,000 and 37,000; autoradiography of 125I-labeled PAM-B revealed only the same two bands, and 125I-labeled PAM-B co-eluted with enzyme activity during gel filtration. PAM-A was still heterogeneous based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The properties of purified PAM-A and PAM-B were very similar to those of amidation activity in crude extracts: activity was reduced upon removal of molecular oxygen; activity was stimulated by the addition of CuSO4 and eliminated by the addition of diethyldithiocarbamate; activity was stimulated by the addition of ascorbate, with optimal levels of ascorbate increasing as the concentration of peptide substrate was increased. In the presence of 1.25 mM ascorbate, PAM-B exhibited a Km of 7.0 microM for D-Tyr-Val-Gly and a Vmax of 84 nmol/micrograms/h.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D010105 Oxygenases Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules. Oxygenase
D010904 Pituitary Gland, Posterior Neural tissue of the pituitary gland, also known as the neurohypophysis. It consists of the distal AXONS of neurons that produce VASOPRESSIN and OXYTOCIN in the SUPRAOPTIC NUCLEUS and the PARAVENTRICULAR NUCLEUS. These axons travel down through the MEDIAN EMINENCE, the hypothalamic infundibulum of the PITUITARY STALK, to the posterior lobe of the pituitary gland. Neurohypophysis,Infundibular Process,Lobus Nervosus,Neural Lobe,Pars Nervosa of Pituitary,Posterior Lobe of Pituitary,Gland, Posterior Pituitary,Infundibular Processes,Lobe, Neural,Lobes, Neural,Nervosus, Lobus,Neural Lobes,Pituitary Pars Nervosa,Pituitary Posterior Lobe,Posterior Pituitary Gland,Posterior Pituitary Glands,Process, Infundibular,Processes, Infundibular
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D002848 Chromatography, DEAE-Cellulose A type of ion exchange chromatography using diethylaminoethyl cellulose (DEAE-CELLULOSE) as a positively charged resin. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) DEAE-Cellulose Chromatography,Chromatography, DEAE Cellulose,DEAE Cellulose Chromatography
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic

Related Publications

A S Murthy, and R E Mains, and B A Eipper
April 1987, Molecular endocrinology (Baltimore, Md.),
A S Murthy, and R E Mains, and B A Eipper
May 1993, Annals of the New York Academy of Sciences,
A S Murthy, and R E Mains, and B A Eipper
October 1994, Neurochemistry international,
A S Murthy, and R E Mains, and B A Eipper
April 2003, Protein expression and purification,
A S Murthy, and R E Mains, and B A Eipper
August 2000, Endocrinology,
A S Murthy, and R E Mains, and B A Eipper
December 1989, Biokhimiia (Moscow, Russia),
A S Murthy, and R E Mains, and B A Eipper
August 1991, General and comparative endocrinology,
A S Murthy, and R E Mains, and B A Eipper
January 1997, Methods in enzymology,
Copied contents to your clipboard!