Hyperacuity in cat retinal ganglion cells. 1986

R Shapley, and J Victor

Cat X retinal ganglion cells that can resolve sine gratings of only 2.5 cycles per degree can nevertheless respond reliably to displacements of a grating of approximately 1 minute of arc. This is a form of hyperacuity comparable in magnitude to that seen in human vision. A theoretical analysis of this form of hyperacuity reveals it to be a result of the high gain and low noise of ganglion cells. The hyperacuity expected for the best retinal ganglion cells is substantially better than that observed in behavioral experiments. Thus the brain, rather than improving on the retinal signal-to-noise ratio by pooling signals from many ganglion cells, is unable to make use of all the hyperacuity information present in single ganglion cell responses.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell
D014796 Visual Perception The selecting and organizing of visual stimuli based on the individual's past experience. Visual Processing,Perception, Visual,Processing, Visual

Related Publications

R Shapley, and J Victor
May 1972, Investigative ophthalmology,
R Shapley, and J Victor
July 1981, Nature,
R Shapley, and J Victor
September 1967, Journal of neurophysiology,
R Shapley, and J Victor
July 1980, Nature,
R Shapley, and J Victor
July 1985, The Journal of comparative neurology,
R Shapley, and J Victor
March 2004, Journal of neurophysiology,
R Shapley, and J Victor
January 1983, Progress in brain research,
R Shapley, and J Victor
April 1987, The Journal of general physiology,
R Shapley, and J Victor
November 1975, Journal of neurophysiology,
R Shapley, and J Victor
February 2002, The Journal of physiology,
Copied contents to your clipboard!